IDEAS home Printed from https://ideas.repec.org/a/inm/orserv/v10y2018i3pv-vii.html
   My bibliography  Save this article

Introduction to the Special Issue on Advancing Health Services

Author

Listed:
  • Lisa M. Maillart

    (Department of Industrial Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261)

  • Maria E. Mayorga

    (Department of Industrial and Systems Engineering, North Carolina State University, Raleigh, North Carolina 27695)

Abstract

No abstract is available for this item.

Suggested Citation

  • Lisa M. Maillart & Maria E. Mayorga, 2018. "Introduction to the Special Issue on Advancing Health Services," Service Science, INFORMS, vol. 10(3), pages 1-1, September.
  • Handle: RePEc:inm:orserv:v:10:y:2018:i:3:p:v-vii
    DOI: serv.2018.0225
    as

    Download full text from publisher

    File URL: https://doi.org/serv.2018.0225
    Download Restriction: no

    File URL: https://libkey.io/serv.2018.0225?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hui Zhang & Christian Wernz & Danny R. Hughes, 2018. "A Stochastic Game Analysis of Incentives and Behavioral Barriers in Chronic Disease Management," Service Science, INFORMS, vol. 10(3), pages 302-319, September.
    2. Junghye Lee & Ryeok-Hwan Kwon & Hyung Woo Kim & Sung-Hong Kang & Kwang-Jae Kim & Chi-Hyuck Jun, 2018. "A Data-Driven Procedure of Providing a Health Promotion Program for Hypertension Prevention," Service Science, INFORMS, vol. 10(3), pages 289-301, September.
    3. Alba C. Rojas-Cordova & Niyousha Hosseinichimeh, 2018. "Trial Termination and Drug Misclassification in Sequential Adaptive Clinical Trials," Service Science, INFORMS, vol. 10(3), pages 354-377, September.
    4. S. Ayca Erdogan & Tracey L. Krupski & Jennifer Mason Lobo, 2018. "Optimization of Telemedicine Appointments in Rural Areas," Service Science, INFORMS, vol. 10(3), pages 261-276, September.
    5. Serhat Gul, 2018. "A Stochastic Programming Approach for Appointment Scheduling Under Limited Availability of Surgery Turnover Teams," Service Science, INFORMS, vol. 10(3), pages 277-288, September.
    6. Karen Hicklin & Julie S. Ivy & Fay Cobb Payton & Meera Viswanathan & Evan Myers, 2018. "Exploring the Value of Waiting During Labor," Service Science, INFORMS, vol. 10(3), pages 334-353, September.
    7. Jan Schoenfelder & Christian Pfefferlen, 2018. "Decision Support for the Physician Scheduling Process at a German Hospital," Service Science, INFORMS, vol. 10(3), pages 215-229, September.
    8. Brendan K. Eagen & Timothy C. Y. Chan & Michael W. Carter, 2018. "Women’s College Hospital Uses Operations Research to Create an Ambulatory Clinic Schedule," Service Science, INFORMS, vol. 10(3), pages 230-240, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arielle Anderer & Hamsa Bastani & John Silberholz, 2022. "Adaptive Clinical Trial Designs with Surrogates: When Should We Bother?," Management Science, INFORMS, vol. 68(3), pages 1982-2002, March.
    2. Wang, Fan & Zhang, Chao & Zhang, Hui & Xu, Liang, 2021. "Short-term physician rescheduling model with feature-driven demand for mental disorders outpatients," Omega, Elsevier, vol. 105(C).
    3. Christian Wernz & Yongjia Song & Danny R. Hughes, 2021. "How hospitals can improve their public quality metrics: a decision-theoretic model," Health Care Management Science, Springer, vol. 24(4), pages 702-715, December.
    4. Fainman, Emily Zhu & Kucukyazici, Beste, 2020. "Design of financial incentives and payment schemes in healthcare systems: A review," Socio-Economic Planning Sciences, Elsevier, vol. 72(C).
    5. Matthew D. Bailey & Lucas A. Waddell, 2020. "Daily Tutor Scheduling Support at Hopeful Journeys Educational Center," Interfaces, INFORMS, vol. 50(5), pages 287-297, September.
    6. Shaowen Lan & Wenjuan Fan & Kaining Shao & Shanlin Yang & Panos M. Pardalos, 2022. "A column-generation-based approach for an integrated service planning and physician scheduling problem considering re-consultation," Journal of Combinatorial Optimization, Springer, vol. 44(5), pages 3446-3476, December.
    7. Nur Banu Demir & Serhat Gul & Melih Çelik, 2021. "A stochastic programming approach for chemotherapy appointment scheduling," Naval Research Logistics (NRL), John Wiley & Sons, vol. 68(1), pages 112-133, February.
    8. Elisa F. Long & Gilberto Montibeller & Jun Zhuang, 2022. "Health Decision Analysis: Evolution, Trends, and Emerging Topics," Decision Analysis, INFORMS, vol. 19(4), pages 255-264, December.
    9. Sezgin Ayabakan & Indranil R. Bardhan & Zhiqiang (Eric) Zheng, 2024. "Impact of Telehealth and Process Virtualization on Healthcare Utilization," Information Systems Research, INFORMS, vol. 35(1), pages 45-65, March.
    10. Gang Du & Xi Liang & Xiaoling Ouyang & Chunming Wang, 2021. "Risk prediction of hypertension complications based on the intelligent algorithm optimized Bayesian network," Journal of Combinatorial Optimization, Springer, vol. 42(4), pages 966-987, November.
    11. Justin J. Boutilier & Timothy C. Y. Chan, 2023. "Introducing and Integrating Machine Learning in an Operations Research Curriculum: An Application-Driven Course," INFORMS Transactions on Education, INFORMS, vol. 23(2), pages 64-83, January.
    12. Bozkir, Cem D.C. & Ozmemis, Cagri & Kurbanzade, Ali Kaan & Balcik, Burcu & Gunes, Evrim D. & Tuglular, Serhan, 2023. "Capacity planning for effective cohorting of hemodialysis patients during the coronavirus pandemic: A case study," European Journal of Operational Research, Elsevier, vol. 304(1), pages 276-291.
    13. Sean Harris & David Claudio, 2022. "Current Trends in Operating Room Scheduling 2015 to 2020: a Literature Review," SN Operations Research Forum, Springer, vol. 3(1), pages 1-42, March.
    14. Jakob Heins & Jan Schoenfelder & Steffen Heider & Axel R. Heller & Jens O. Brunner, 2022. "A Scalable Forecasting Framework to Predict COVID-19 Hospital Bed Occupancy," Interfaces, INFORMS, vol. 52(6), pages 508-523, November.
    15. Çelik, Batuhan & Gul, Serhat & Çelik, Melih, 2023. "A stochastic programming approach to surgery scheduling under parallel processing principle," Omega, Elsevier, vol. 115(C).
    16. Cai, Yun & Song, Haiqing & Wang, Shan, 2024. "Managing appointment-based services with electronic visits," European Journal of Operational Research, Elsevier, vol. 315(3), pages 863-878.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:orserv:v:10:y:2018:i:3:p:v-vii. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.