IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v67y2019i2p562-576.html
   My bibliography  Save this article

Input–Output Uncertainty Comparisons for Discrete Optimization via Simulation

Author

Listed:
  • Eunhye Song

    (Department of Industrial and Manufacturing Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802;)

  • Barry L. Nelson

    (Department of Industrial Engineering and Management Sciences, Northwestern University, Evanston, Illinois 60208)

Abstract

When input distributions to a simulation model are estimated from real-world data, they naturally have estimation error causing input uncertainty in the simulation output. If an optimization via simulation (OvS) method is applied that treats the input distributions as “correct,” then there is a risk of making a suboptimal decision for the real world, which we call input model risk . This paper addresses a discrete OvS (DOvS) problem of selecting the real-world optimal from among a finite number of systems when all of them share the same input distributions estimated from common input data. Because input uncertainty cannot be reduced without collecting additional real-world data—which may be expensive or impossible—a DOvS procedure should reflect the limited resolution provided by the simulation model in distinguishing the real-world optimal solution from the others. In light of this, our input–output uncertainty comparisons (IOU-C) procedure focuses on comparisons rather than selection : it provides simultaneous confidence intervals for the difference between each system’s real-world mean and the best mean of the rest with any desired probability, while accounting for both stochastic and input uncertainty. To make the resolution as high as possible (intervals as short as possible) we exploit the common input data effect to reduce uncertainty in the estimated differences. Under mild conditions we prove that the IOU-C procedure provides the desired statistical guarantee asymptotically as the real-world sample size and simulation effort increase, but it is designed to be effective in finite samples.

Suggested Citation

  • Eunhye Song & Barry L. Nelson, 2019. "Input–Output Uncertainty Comparisons for Discrete Optimization via Simulation," Operations Research, INFORMS, vol. 67(2), pages 562-576, March.
  • Handle: RePEc:inm:oropre:v:67:y:2019:i:2:p:562-576
    DOI: 10.1287/opre.2018.1796
    as

    Download full text from publisher

    File URL: https://doi.org/10.1287/opre.2018.1796
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.2018.1796?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Aharon Ben-Tal & Dick den Hertog & Anja De Waegenaere & Bertrand Melenberg & Gijs Rennen, 2013. "Robust Solutions of Optimization Problems Affected by Uncertain Probabilities," Management Science, INFORMS, vol. 59(2), pages 341-357, April.
    2. Erick Delage & Yinyu Ye, 2010. "Distributionally Robust Optimization Under Moment Uncertainty with Application to Data-Driven Problems," Operations Research, INFORMS, vol. 58(3), pages 595-612, June.
    3. Barry L. Nelson & Frank J. Matejcik, 1995. "Using Common Random Numbers for Indifference-Zone Selection and Multiple Comparisons in Simulation," Management Science, INFORMS, vol. 41(12), pages 1935-1945, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Amogh Bhosekar & Sandra Ekşioğlu & Tuğçe Işık & Robert Allen, 2023. "A discrete event simulation model for coordinating inventory management and material handling in hospitals," Annals of Operations Research, Springer, vol. 320(2), pages 603-630, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhi Chen & Melvyn Sim & Huan Xu, 2019. "Distributionally Robust Optimization with Infinitely Constrained Ambiguity Sets," Operations Research, INFORMS, vol. 67(5), pages 1328-1344, September.
    2. Jun-ya Gotoh & Michael Jong Kim & Andrew E. B. Lim, 2020. "Worst-case sensitivity," Papers 2010.10794, arXiv.org.
    3. Taozeng Zhu & Jingui Xie & Melvyn Sim, 2022. "Joint Estimation and Robustness Optimization," Management Science, INFORMS, vol. 68(3), pages 1659-1677, March.
    4. Shunichi Ohmori, 2021. "A Predictive Prescription Using Minimum Volume k -Nearest Neighbor Enclosing Ellipsoid and Robust Optimization," Mathematics, MDPI, vol. 9(2), pages 1-16, January.
    5. L. Jeff Hong & Zhiyuan Huang & Henry Lam, 2021. "Learning-Based Robust Optimization: Procedures and Statistical Guarantees," Management Science, INFORMS, vol. 67(6), pages 3447-3467, June.
    6. Pengyu Qian & Zizhuo Wang & Zaiwen Wen, 2015. "A Composite Risk Measure Framework for Decision Making under Uncertainty," Papers 1501.01126, arXiv.org.
    7. Weiwei Fan & L. Jeff Hong & Xiaowei Zhang, 2020. "Distributionally Robust Selection of the Best," Management Science, INFORMS, vol. 66(1), pages 190-208, January.
    8. Antonio J. Conejo & Nicholas G. Hall & Daniel Zhuoyu Long & Runhao Zhang, 2021. "Robust Capacity Planning for Project Management," INFORMS Journal on Computing, INFORMS, vol. 33(4), pages 1533-1550, October.
    9. Vishal Gupta, 2019. "Near-Optimal Bayesian Ambiguity Sets for Distributionally Robust Optimization," Management Science, INFORMS, vol. 65(9), pages 4242-4260, September.
    10. Ran Ji & Miguel A. Lejeune, 2021. "Data-Driven Optimization of Reward-Risk Ratio Measures," INFORMS Journal on Computing, INFORMS, vol. 33(3), pages 1120-1137, July.
    11. Shubhechyya Ghosal & Wolfram Wiesemann, 2020. "The Distributionally Robust Chance-Constrained Vehicle Routing Problem," Operations Research, INFORMS, vol. 68(3), pages 716-732, May.
    12. Wang, Fan & Zhang, Chao & Zhang, Hui & Xu, Liang, 2021. "Short-term physician rescheduling model with feature-driven demand for mental disorders outpatients," Omega, Elsevier, vol. 105(C).
    13. Zhi Chen & Melvyn Sim & Peng Xiong, 2020. "Robust Stochastic Optimization Made Easy with RSOME," Management Science, INFORMS, vol. 66(8), pages 3329-3339, August.
    14. Meysam Cheramin & Jianqiang Cheng & Ruiwei Jiang & Kai Pan, 2022. "Computationally Efficient Approximations for Distributionally Robust Optimization Under Moment and Wasserstein Ambiguity," INFORMS Journal on Computing, INFORMS, vol. 34(3), pages 1768-1794, May.
    15. Ahmadreza Marandi & Aharon Ben-Tal & Dick den Hertog & Bertrand Melenberg, 2022. "Extending the Scope of Robust Quadratic Optimization," INFORMS Journal on Computing, INFORMS, vol. 34(1), pages 211-226, January.
    16. Wolfram Wiesemann & Daniel Kuhn & Melvyn Sim, 2014. "Distributionally Robust Convex Optimization," Operations Research, INFORMS, vol. 62(6), pages 1358-1376, December.
    17. Ren, Ke & Bidkhori, Hoda, 2023. "A study of data-driven distributionally robust optimization with incomplete joint data under finite support," European Journal of Operational Research, Elsevier, vol. 305(2), pages 754-765.
    18. Postek, K.S. & den Hertog, D. & Melenberg, B., 2015. "Computationally Tractable Counterparts of Distributionally Robust Constraints on Risk Measures (revision of CentER DP 2014-031)," Discussion Paper 2015-047, Tilburg University, Center for Economic Research.
    19. Chen, Qingxin & Ma, Shoufeng & Li, Hongming & Zhu, Ning & He, Qiao-Chu, 2024. "Optimizing bike rebalancing strategies in free-floating bike-sharing systems: An enhanced distributionally robust approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 184(C).
    20. Basciftci, Beste & Ahmed, Shabbir & Shen, Siqian, 2021. "Distributionally robust facility location problem under decision-dependent stochastic demand," European Journal of Operational Research, Elsevier, vol. 292(2), pages 548-561.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:67:y:2019:i:2:p:562-576. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.