IDEAS home Printed from https://ideas.repec.org/a/inm/orijoc/v34y2022i1p211-226.html
   My bibliography  Save this article

Extending the Scope of Robust Quadratic Optimization

Author

Listed:
  • Ahmadreza Marandi

    (Department of Industrial Engineering and Innovation Sciences, Eindhoven University of Technology, Eindhoven 5600 MB, Netherlands)

  • Aharon Ben-Tal

    (CentER, Tilburg University, Tilburg 5037 AB, Netherlands)

  • Dick den Hertog

    (Amsterdam Business School, University of Amsterdam, Amsterdam 1012 WX, Netherlands)

  • Bertrand Melenberg

    (Tilburg School of Economics and Management, Tilburg University, Tilburg 5037 AB, Netherlands)

Abstract

We derive computationally tractable formulations of the robust counterparts of convex quadratic and conic quadratic constraints that are concave in matrix-valued uncertain parameters. We do this for a broad range of uncertainty sets. Our results provide extensions to known results from the literature. We also consider hard quadratic constraints: those that are convex in uncertain matrix-valued parameters. For the robust counterpart of such constraints, we derive inner and outer tractable approximations. As an application, we show how to construct a natural uncertainty set based on a statistical confidence set around a sample mean vector and covariance matrix and use this to provide a tractable reformulation of the robust counterpart of an uncertain portfolio optimization problem. We also apply the results of this paper to norm approximation problems. Summary of Contribution: This paper develops new theoretical results and algorithms that extend the scope of a robust quadratic optimization problem. More specifically, we derive computationally tractable formulations of the robust counterparts of convex quadratic and conic quadratic constraints that are concave in matrix-valued uncertain parameters. We also consider hard quadratic constraints: those that are convex in uncertain matrix-valued parameters. For the robust counterpart of such constraints, we derive inner and outer tractable approximations.

Suggested Citation

  • Ahmadreza Marandi & Aharon Ben-Tal & Dick den Hertog & Bertrand Melenberg, 2022. "Extending the Scope of Robust Quadratic Optimization," INFORMS Journal on Computing, INFORMS, vol. 34(1), pages 211-226, January.
  • Handle: RePEc:inm:orijoc:v:34:y:2022:i:1:p:211-226
    DOI: 10.1287/ijoc.2021.1059
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/ijoc.2021.1059
    Download Restriction: no

    File URL: https://libkey.io/10.1287/ijoc.2021.1059?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Trapani, Lorenzo, 2016. "Testing for (in)finite moments," Journal of Econometrics, Elsevier, vol. 191(1), pages 57-68.
    2. Dimitris Bertsimas & Melvyn Sim, 2004. "The Price of Robustness," Operations Research, INFORMS, vol. 52(1), pages 35-53, February.
    3. Aharon Ben-Tal & Dick den Hertog & Anja De Waegenaere & Bertrand Melenberg & Gijs Rennen, 2013. "Robust Solutions of Optimization Problems Affected by Uncertain Probabilities," Management Science, INFORMS, vol. 59(2), pages 341-357, April.
    4. Erick Delage & Yinyu Ye, 2010. "Distributionally Robust Optimization Under Moment Uncertainty with Application to Data-Driven Problems," Operations Research, INFORMS, vol. 58(3), pages 595-612, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhi Chen & Melvyn Sim & Huan Xu, 2019. "Distributionally Robust Optimization with Infinitely Constrained Ambiguity Sets," Operations Research, INFORMS, vol. 67(5), pages 1328-1344, September.
    2. Jun-ya Gotoh & Michael Jong Kim & Andrew E. B. Lim, 2020. "Worst-case sensitivity," Papers 2010.10794, arXiv.org.
    3. Taozeng Zhu & Jingui Xie & Melvyn Sim, 2022. "Joint Estimation and Robustness Optimization," Management Science, INFORMS, vol. 68(3), pages 1659-1677, March.
    4. Shunichi Ohmori, 2021. "A Predictive Prescription Using Minimum Volume k -Nearest Neighbor Enclosing Ellipsoid and Robust Optimization," Mathematics, MDPI, vol. 9(2), pages 1-16, January.
    5. L. Jeff Hong & Zhiyuan Huang & Henry Lam, 2021. "Learning-Based Robust Optimization: Procedures and Statistical Guarantees," Management Science, INFORMS, vol. 67(6), pages 3447-3467, June.
    6. Pengyu Qian & Zizhuo Wang & Zaiwen Wen, 2015. "A Composite Risk Measure Framework for Decision Making under Uncertainty," Papers 1501.01126, arXiv.org.
    7. Antonio J. Conejo & Nicholas G. Hall & Daniel Zhuoyu Long & Runhao Zhang, 2021. "Robust Capacity Planning for Project Management," INFORMS Journal on Computing, INFORMS, vol. 33(4), pages 1533-1550, October.
    8. Shubhechyya Ghosal & Wolfram Wiesemann, 2020. "The Distributionally Robust Chance-Constrained Vehicle Routing Problem," Operations Research, INFORMS, vol. 68(3), pages 716-732, May.
    9. Wang, Fan & Zhang, Chao & Zhang, Hui & Xu, Liang, 2021. "Short-term physician rescheduling model with feature-driven demand for mental disorders outpatients," Omega, Elsevier, vol. 105(C).
    10. Zhi Chen & Melvyn Sim & Peng Xiong, 2020. "Robust Stochastic Optimization Made Easy with RSOME," Management Science, INFORMS, vol. 66(8), pages 3329-3339, August.
    11. Meysam Cheramin & Jianqiang Cheng & Ruiwei Jiang & Kai Pan, 2022. "Computationally Efficient Approximations for Distributionally Robust Optimization Under Moment and Wasserstein Ambiguity," INFORMS Journal on Computing, INFORMS, vol. 34(3), pages 1768-1794, May.
    12. Chen, Qingxin & Ma, Shoufeng & Li, Hongming & Zhu, Ning & He, Qiao-Chu, 2024. "Optimizing bike rebalancing strategies in free-floating bike-sharing systems: An enhanced distributionally robust approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 184(C).
    13. Andrew J. Keith & Darryl K. Ahner, 2021. "A survey of decision making and optimization under uncertainty," Annals of Operations Research, Springer, vol. 300(2), pages 319-353, May.
    14. Yu Wang & Yu Zhang & Minglong Zhou & Jiafu Tang, 2023. "Feature‐driven robust surgery scheduling," Production and Operations Management, Production and Operations Management Society, vol. 32(6), pages 1921-1938, June.
    15. Jose Blanchet & Karthyek Murthy, 2019. "Quantifying Distributional Model Risk via Optimal Transport," Mathematics of Operations Research, INFORMS, vol. 44(2), pages 565-600, May.
    16. Haolin Ruan & Zhi Chen & Chin Pang Ho, 2023. "Adjustable Distributionally Robust Optimization with Infinitely Constrained Ambiguity Sets," INFORMS Journal on Computing, INFORMS, vol. 35(5), pages 1002-1023, September.
    17. Chaithanya Bandi & Eojin Han & Omid Nohadani, 2019. "Sustainable Inventory with Robust Periodic-Affine Policies and Application to Medical Supply Chains," Management Science, INFORMS, vol. 65(10), pages 4636-4655, October.
    18. Jun-Ya Gotoh & Michael Jong Kim & Andrew E. B. Lim, 2017. "Calibration of Distributionally Robust Empirical Optimization Models," Papers 1711.06565, arXiv.org, revised May 2020.
    19. Gabrel, Virginie & Murat, Cécile & Thiele, Aurélie, 2014. "Recent advances in robust optimization: An overview," European Journal of Operational Research, Elsevier, vol. 235(3), pages 471-483.
    20. Zhi Chen & Peng Xiong, 2023. "RSOME in Python: An Open-Source Package for Robust Stochastic Optimization Made Easy," INFORMS Journal on Computing, INFORMS, vol. 35(4), pages 717-724, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:orijoc:v:34:y:2022:i:1:p:211-226. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.