IDEAS home Printed from https://ideas.repec.org/a/inm/orijoc/v34y2022i3p1768-1794.html
   My bibliography  Save this article

Computationally Efficient Approximations for Distributionally Robust Optimization Under Moment and Wasserstein Ambiguity

Author

Listed:
  • Meysam Cheramin

    (Department of Systems and Industrial Engineering, University of Arizona, Tucson, Arizona 85721)

  • Jianqiang Cheng

    (Department of Systems and Industrial Engineering, University of Arizona, Tucson, Arizona 85721)

  • Ruiwei Jiang

    (Department of Industrial and Operations Engineering, University of Michigan, Ann Arbor, Michigan 48109)

  • Kai Pan

    (Department of Logistics and Maritime Studies, Faculty of Business, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong)

Abstract

Distributionally robust optimization (DRO) is a modeling framework in decision making under uncertainty in which the probability distribution of a random parameter is unknown although its partial information (e.g., statistical properties) is available. In this framework, the unknown probability distribution is assumed to lie in an ambiguity set consisting of all distributions that are compatible with the available partial information. Although DRO bridges the gap between stochastic programming and robust optimization, one of its limitations is that its models for large-scale problems can be significantly difficult to solve, especially when the uncertainty is of high dimension. In this paper, we propose computationally efficient inner and outer approximations for DRO problems under a piecewise linear objective function and with a moment-based ambiguity set and a combined ambiguity set including Wasserstein distance and moment information. In these approximations, we split a random vector into smaller pieces, leading to smaller matrix constraints. In addition, we use principal component analysis to shrink uncertainty space dimensionality. We quantify the quality of the developed approximations by deriving theoretical bounds on their optimality gap. We display the practical applicability of the proposed approximations in a production–transportation problem and a multiproduct newsvendor problem. The results demonstrate that these approximations dramatically reduce the computational time while maintaining high solution quality. The approximations also help construct an interval that is tight for most cases and includes the (unknown) optimal value for a large-scale DRO problem, which usually cannot be solved to optimality (or even feasibility in most cases). Summary of Contribution: This paper studies an important type of optimization problem, that is, distributionally robust optimization problems, by developing computationally efficient inner and outer approximations via operations research tools. Specifically, we consider several variants of such problems that are practically important and that admit tractable yet large-scale reformulation. We accordingly utilize random vector partition and principal component analysis to derive efficient approximations with smaller sizes, which, more importantly, provide a theoretical performance guarantee with respect to low optimality gaps. We verify the significant efficiency (i.e., reducing computational time while maintaining high solution quality) of our proposed approximations in solving both production–transportation and multiproduct newsvendor problems via extensive computing experiments.

Suggested Citation

  • Meysam Cheramin & Jianqiang Cheng & Ruiwei Jiang & Kai Pan, 2022. "Computationally Efficient Approximations for Distributionally Robust Optimization Under Moment and Wasserstein Ambiguity," INFORMS Journal on Computing, INFORMS, vol. 34(3), pages 1768-1794, May.
  • Handle: RePEc:inm:orijoc:v:34:y:2022:i:3:p:1768-1794
    DOI: 10.1287/ijoc.2021.1123
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/ijoc.2021.1123
    Download Restriction: no

    File URL: https://libkey.io/10.1287/ijoc.2021.1123?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Dimitris Bertsimas & Melvyn Sim, 2004. "The Price of Robustness," Operations Research, INFORMS, vol. 52(1), pages 35-53, February.
    2. Aharon Ben-Tal & Dick den Hertog & Anja De Waegenaere & Bertrand Melenberg & Gijs Rennen, 2013. "Robust Solutions of Optimization Problems Affected by Uncertain Probabilities," Management Science, INFORMS, vol. 59(2), pages 341-357, April.
    3. Laurent El Ghaoui & Maksim Oks & Francois Oustry, 2003. "Worst-Case Value-At-Risk and Robust Portfolio Optimization: A Conic Programming Approach," Operations Research, INFORMS, vol. 51(4), pages 543-556, August.
    4. Erick Delage & Yinyu Ye, 2010. "Distributionally Robust Optimization Under Moment Uncertainty with Application to Data-Driven Problems," Operations Research, INFORMS, vol. 58(3), pages 595-612, June.
    5. Dimitris Bertsimas & Xuan Vinh Doan & Karthik Natarajan & Chung-Piaw Teo, 2010. "Models for Minimax Stochastic Linear Optimization Problems with Risk Aversion," Mathematics of Operations Research, INFORMS, vol. 35(3), pages 580-602, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shanshan Wang & Erick Delage, 2024. "A Column Generation Scheme for Distributionally Robust Multi-Item Newsvendor Problems," INFORMS Journal on Computing, INFORMS, vol. 36(3), pages 849-867, May.
    2. Ming Zhao & Nickolas Freeman & Kai Pan, 2023. "Robust Sourcing Under Multilevel Supply Risks: Analysis of Random Yield and Capacity," INFORMS Journal on Computing, INFORMS, vol. 35(1), pages 178-195, January.
    3. Ketkov, Sergey S., 2024. "A study of distributionally robust mixed-integer programming with Wasserstein metric: on the value of incomplete data," European Journal of Operational Research, Elsevier, vol. 313(2), pages 602-615.
    4. Xiangyi Fan & Grani A. Hanasusanto, 2024. "A Decision Rule Approach for Two-Stage Data-Driven Distributionally Robust Optimization Problems with Random Recourse," INFORMS Journal on Computing, INFORMS, vol. 36(2), pages 526-542, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhi Chen & Melvyn Sim & Huan Xu, 2019. "Distributionally Robust Optimization with Infinitely Constrained Ambiguity Sets," Operations Research, INFORMS, vol. 67(5), pages 1328-1344, September.
    2. L. Jeff Hong & Zhiyuan Huang & Henry Lam, 2021. "Learning-Based Robust Optimization: Procedures and Statistical Guarantees," Management Science, INFORMS, vol. 67(6), pages 3447-3467, June.
    3. Pengyu Qian & Zizhuo Wang & Zaiwen Wen, 2015. "A Composite Risk Measure Framework for Decision Making under Uncertainty," Papers 1501.01126, arXiv.org.
    4. Shubhechyya Ghosal & Wolfram Wiesemann, 2020. "The Distributionally Robust Chance-Constrained Vehicle Routing Problem," Operations Research, INFORMS, vol. 68(3), pages 716-732, May.
    5. Zhi Chen & Melvyn Sim & Peng Xiong, 2020. "Robust Stochastic Optimization Made Easy with RSOME," Management Science, INFORMS, vol. 66(8), pages 3329-3339, August.
    6. Wolfram Wiesemann & Daniel Kuhn & Melvyn Sim, 2014. "Distributionally Robust Convex Optimization," Operations Research, INFORMS, vol. 62(6), pages 1358-1376, December.
    7. Gabrel, Virginie & Murat, Cécile & Thiele, Aurélie, 2014. "Recent advances in robust optimization: An overview," European Journal of Operational Research, Elsevier, vol. 235(3), pages 471-483.
    8. Yongzhen Li & Xueping Li & Jia Shu & Miao Song & Kaike Zhang, 2022. "A General Model and Efficient Algorithms for Reliable Facility Location Problem Under Uncertain Disruptions," INFORMS Journal on Computing, INFORMS, vol. 34(1), pages 407-426, January.
    9. Guopeng Song & Roel Leus, 2022. "Parallel Machine Scheduling Under Uncertainty: Models and Exact Algorithms," INFORMS Journal on Computing, INFORMS, vol. 34(6), pages 3059-3079, November.
    10. Wang, Changjun & Chen, Shutong, 2020. "A distributionally robust optimization for blood supply network considering disasters," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 134(C).
    11. Wei Liu & Li Yang & Bo Yu, 2021. "KDE distributionally robust portfolio optimization with higher moment coherent risk," Annals of Operations Research, Springer, vol. 307(1), pages 363-397, December.
    12. Zhi Chen & Weijun Xie, 2021. "Regret in the Newsvendor Model with Demand and Yield Randomness," Production and Operations Management, Production and Operations Management Society, vol. 30(11), pages 4176-4197, November.
    13. Jun-ya Gotoh & Michael Jong Kim & Andrew E. B. Lim, 2020. "Worst-case sensitivity," Papers 2010.10794, arXiv.org.
    14. Ruiwei Jiang & Siqian Shen & Yiling Zhang, 2017. "Integer Programming Approaches for Appointment Scheduling with Random No-Shows and Service Durations," Operations Research, INFORMS, vol. 65(6), pages 1638-1656, December.
    15. Taozeng Zhu & Jingui Xie & Melvyn Sim, 2022. "Joint Estimation and Robustness Optimization," Management Science, INFORMS, vol. 68(3), pages 1659-1677, March.
    16. Shunichi Ohmori, 2021. "A Predictive Prescription Using Minimum Volume k -Nearest Neighbor Enclosing Ellipsoid and Robust Optimization," Mathematics, MDPI, vol. 9(2), pages 1-16, January.
    17. Zhao, Kena & Ng, Tsan Sheng & Tan, Chin Hon & Pang, Chee Khiang, 2021. "An almost robust model for minimizing disruption exposures in supply systems," European Journal of Operational Research, Elsevier, vol. 295(2), pages 547-559.
    18. Aharon Ben-Tal & Dimitris Bertsimas & David B. Brown, 2010. "A Soft Robust Model for Optimization Under Ambiguity," Operations Research, INFORMS, vol. 58(4-part-2), pages 1220-1234, August.
    19. Antonio J. Conejo & Nicholas G. Hall & Daniel Zhuoyu Long & Runhao Zhang, 2021. "Robust Capacity Planning for Project Management," INFORMS Journal on Computing, INFORMS, vol. 33(4), pages 1533-1550, October.
    20. Vishal Gupta, 2019. "Near-Optimal Bayesian Ambiguity Sets for Distributionally Robust Optimization," Management Science, INFORMS, vol. 65(9), pages 4242-4260, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:orijoc:v:34:y:2022:i:3:p:1768-1794. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.