IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v64y2016i3p736-755.html
   My bibliography  Save this article

Finding Rumor Sources on Random Trees

Author

Listed:
  • Devavrat Shah

    (Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139)

  • Tauhid Zaman

    (Sloan School of Management, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139)

Abstract

We consider the problem of detecting the source of a rumor which has spread in a network using only observations about which set of nodes are infected with the rumor and with no information as to when these nodes became infected. In a recent work ( Shah and Zaman 2010 ), this rumor source detection problem was introduced and studied. The authors proposed the graph score function rumor centrality as an estimator for detecting the source. They establish it to be the maximum likelihood estimator with respect to the popular Susceptible Infected (SI) model with exponential spreading times for regular trees. They showed that as the size of the infected graph increases, for a path graph (2-regular tree), the probability of source detection goes to 0 and for d -regular trees with d ≥ 3 the probability of detection, say α d , remains bounded away from 0 and is less than 1/2. However, their results stop short of providing insights for the performance of the rumor centrality estimator in more general settings such as irregular trees or the SI model with nonexponential spreading times.This paper overcomes this limitation and establishes the effectiveness of rumor centrality for source detection for generic random trees and the SI model with a generic spreading time distribution. The key result is an interesting connection between a continuous time branching process and the effectiveness of rumor centrality. Through this, it is possible to quantify the detection probability precisely. As a consequence, we recover all previous results as a special case and obtain a variety of novel results including the universality of rumor centrality in the context of tree-like graphs and the SI model with a generic spreading time distribution.

Suggested Citation

  • Devavrat Shah & Tauhid Zaman, 2016. "Finding Rumor Sources on Random Trees," Operations Research, INFORMS, vol. 64(3), pages 736-755, June.
  • Handle: RePEc:inm:oropre:v:64:y:2016:i:3:p:736-755
    DOI: 10.1287/opre.2015.1455
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/opre.2015.1455
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.2015.1455?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Cristopher Moore & M. E. J. Newman, 2000. "Epidemics and Percolation in Small-World Networks," Working Papers 00-01-002, Santa Fe Institute.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiang, Meiling & Gao, Qingwu & Zhuang, Jun, 2021. "Reciprocal spreading and debunking processes of online misinformation: A new rumor spreading–debunking model with a case study," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 565(C).
    2. Michel Grabisch & Agnieszka Rusinowska & Xavier Venel, 2019. "Diffusion in countably infinite networks," Documents de travail du Centre d'Economie de la Sorbonne 19017, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    3. Edward Anderson & David Gamarnik & Anton Kleywegt & Asuman Ozdaglar, 2016. "Preface to the Special Issue on Information and Decisions in Social and Economic Networks," Operations Research, INFORMS, vol. 64(3), pages 561-563, June.
    4. Shi, Chaoyi & Zhang, Qi & Chu, Tianguang, 2022. "Source estimation in continuous-time diffusion networks via incomplete observation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 592(C).
    5. Sahand Negahban & Sewoong Oh & Devavrat Shah, 2017. "Rank Centrality: Ranking from Pairwise Comparisons," Operations Research, INFORMS, vol. 65(1), pages 266-287, February.
    6. Vahideh Manshadi & Sidhant Misra & Scott Rodilitz, 2020. "Diffusion in Random Networks: Impact of Degree Distribution," Operations Research, INFORMS, vol. 68(6), pages 1722-1741, November.
    7. Gong, Chang & Li, Jichao & Qian, Liwei & Li, Siwei & Yang, Zhiwei & Yang, Kewei, 2024. "HMSL: Source localization based on higher-order Markov propagation," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    8. Suisheng Yu & Mingcai Li & Fengming Liu, 2017. "Rumor Identification with Maximum Entropy in MicroNet," Complexity, Hindawi, vol. 2017, pages 1-8, September.
    9. Sahand Negahban & Sewoong Oh & Devavrat Shah, 2017. "Rank Centrality: Ranking from Pairwise Comparisons," Operations Research, INFORMS, vol. 65(1), pages 266-287, February.
    10. Harry Crane & Min Xu, 2021. "Inference on the history of a randomly growing tree," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(4), pages 639-668, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ganjeh-Ghazvini, Mostafa & Masihi, Mohsen & Ghaedi, Mojtaba, 2014. "Random walk–percolation-based modeling of two-phase flow in porous media: Breakthrough time and net to gross ratio estimation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 406(C), pages 214-221.
    2. Sadeghnejad, S. & Masihi, M. & King, P.R., 2013. "Dependency of percolation critical exponents on the exponent of power law size distribution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(24), pages 6189-6197.
    3. Pan, Ya-Nan & Lou, Jing-Jing & Han, Xiao-Pu, 2014. "Outbreak patterns of the novel avian influenza (H7N9)," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 401(C), pages 265-270.
    4. Greg Morrison & L Mahadevan, 2012. "Discovering Communities through Friendship," PLOS ONE, Public Library of Science, vol. 7(7), pages 1-9, July.
    5. Andrea Giovannetti, 2012. "Financial Contagion in Industrial Clusters: A Dynamical Analysis and Network Simulation," Department of Economics University of Siena 654, Department of Economics, University of Siena.
    6. Floortje Alkemade & Carolina Castaldi, 2005. "Strategies for the Diffusion of Innovations on Social Networks," Computational Economics, Springer;Society for Computational Economics, vol. 25(1), pages 3-23, February.
    7. Qin, Yang & Zhong, Xiaoxiong & Jiang, Hao & Ye, Yibin, 2015. "An environment aware epidemic spreading model and immune strategy in complex networks," Applied Mathematics and Computation, Elsevier, vol. 261(C), pages 206-215.
    8. Velarde, Carlos & Robledo, Alberto, 2021. "Statistical mechanical model for growth and spread of contagions under gauged population confinement," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 573(C).
    9. I. Vieira & R. Cheng & P. Harper & V. Senna, 2010. "Small world network models of the dynamics of HIV infection," Annals of Operations Research, Springer, vol. 178(1), pages 173-200, July.
    10. Sáenz-Royo, Carlos & Lozano-Rojo, Álvaro, 2023. "Authoritarianism versus participation in innovation decisions," Technovation, Elsevier, vol. 124(C).
    11. Vilches, T.N. & Esteva, L. & Ferreira, C.P., 2019. "Disease persistence and serotype coexistence: An expected feature of human mobility," Applied Mathematics and Computation, Elsevier, vol. 355(C), pages 161-172.
    12. Tomovski, Igor & Kocarev, Ljupčo, 2015. "Network topology inference from infection statistics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 272-285.
    13. Youzhong Wang & Daniel Zeng & Bin Zhu & Xiaolong Zheng & Feiyue Wang, 2014. "Patterns of news dissemination through online news media: A case study in China," Information Systems Frontiers, Springer, vol. 16(4), pages 557-570, September.
    14. Li, Xun & Cao, Lang, 2016. "Diffusion processes of fragmentary information on scale-free networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 450(C), pages 624-634.
    15. Hüseyin İkizler, 2019. "Contagion of network products in small-world networks," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 14(4), pages 789-809, December.
    16. Liu, Yun & Diao, Su-Meng & Zhu, Yi-Xiang & Liu, Qing, 2016. "SHIR competitive information diffusion model for online social media," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 543-553.
    17. Guillaume, Jean-Loup & Latapy, Matthieu, 2006. "Bipartite graphs as models of complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 371(2), pages 795-813.
    18. Foti, Nicholas J. & Pauls, Scott & Rockmore, Daniel N., 2013. "Stability of the World Trade Web over time – An extinction analysis," Journal of Economic Dynamics and Control, Elsevier, vol. 37(9), pages 1889-1910.
    19. Yin, Rongrong & Wang, Yumeng & Li, Linhui & Zhang, Le & Hao, Zhenyang & Lang, Chun, 2024. "A mobile node path optimization approach based on Q-learning to defend against cascading failures on static-mobile networks," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    20. Kumar, Ajay & Swarnakar, Pradip & Jaiswal, Kamya & Kurele, Ritika, 2020. "SMIR model for controlling the spread of information in social networking sites," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:64:y:2016:i:3:p:736-755. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.