IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v64y2016i2p273-289.html
   My bibliography  Save this article

Optimizing Flow Thinning Protection in Multicommodity Networks with Variable Link Capacity

Author

Listed:
  • Michał Pióro

    (Institute of Telecommunications, Warsaw University of Technology, 00-665 Warsaw, Poland; and Department of Electrical and Information Technology, Lund University, 221 00 Lund, Sweden)

  • Yoann Fouquet

    (Sorbonne universités, Université de technologie de Compiègne, UMR CNRS 7253 Heudiasyc, 60203 Compiègne cedex, France)

  • Dritan Nace

    (Sorbonne universités, Université de technologie de Compiègne, UMR CNRS 7253 Heudiasyc, 60203 Compiègne cedex, France)

  • Michael Poss

    (UMR CNRS 5506 LIRMM, Université de Montpellier, 161 rue Ada, 34392 Montpellier Cedex 5, France)

Abstract

Flow thinning (FT) is a concept of a traffic routing and protection strategy applicable to communication networks with variable capacity of links. In such networks, the links do not attain their nominal (maximum) capacity simultaneously, so in a typical network state only some links are fully available whereas on each of the remaining links only a fraction of its maximum capacity is usable. Every end-to-end traffic demand is assigned a set of logical tunnels whose total capacity is dedicated to carry the demand’s traffic. The nominal (i.e., maximum) capacity of the tunnels, supported by the nominal (maximum) link capacity, is subject to state-dependent thinning to account for variable capacity of the links fluctuating below the maximum. Accordingly, the capacity available on the tunnels is also fluctuating below their nominal levels and hence the instantaneous traffic sent between the demand’s end nodes must accommodate to the current total capacity available on its dedicated tunnels. The related multi-commodity flow optimization problem is (N-script)(P-script) -hard and its noncompact linear programming formulation requires path generation. For that, we formulate an integer programming pricing problem, at the same time showing the cases when the pricing is polynomial. We also consider an important variant of FT, affine thinning, that may lead to practical FT implementations. We present a numerical study illustrating traffic efficiency of FT and computational efficiency of its optimization models. Our considerations are relevant, among others, for wireless mesh networks utilizing multiprotocol label switching tunnels.

Suggested Citation

  • Michał Pióro & Yoann Fouquet & Dritan Nace & Michael Poss, 2016. "Optimizing Flow Thinning Protection in Multicommodity Networks with Variable Link Capacity," Operations Research, INFORMS, vol. 64(2), pages 273-289, April.
  • Handle: RePEc:inm:oropre:v:64:y:2016:i:2:p:273-289
    DOI: 10.1287/opre.2016.1486
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/opre.2016.1486
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.2016.1486?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Dimitris Bertsimas & Melvyn Sim, 2004. "The Price of Robustness," Operations Research, INFORMS, vol. 52(1), pages 35-53, February.
    2. Geir Dahl & Mechthild Stoer, 1998. "A Cutting Plane Algorithm for Multicommodity Survivable Network Design Problems," INFORMS Journal on Computing, INFORMS, vol. 10(1), pages 1-11, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sara Mattia & Michael Poss, 2018. "A comparison of different routing schemes for the robust network loading problem: polyhedral results and computation," Computational Optimization and Applications, Springer, vol. 69(3), pages 753-800, April.
    2. Sun, Hao & Yang, Jun & Yang, Chao, 2019. "A robust optimization approach to multi-interval location-inventory and recharging planning for electric vehicles," Omega, Elsevier, vol. 86(C), pages 59-75.
    3. Dimitris Bertsimas & Arthur Delarue & Patrick Jaillet & Sébastien Martin, 2019. "Travel Time Estimation in the Age of Big Data," Operations Research, INFORMS, vol. 67(2), pages 498-515, March.
    4. Khodakaram Salimifard & Sara Bigharaz, 2022. "The multicommodity network flow problem: state of the art classification, applications, and solution methods," Operational Research, Springer, vol. 22(1), pages 1-47, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Siqian Shen & Mingdi You & Yintai Ma, 2017. "Single‐commodity stochastic network design under demand and topological uncertainties with insufficient data," Naval Research Logistics (NRL), John Wiley & Sons, vol. 64(2), pages 154-173, March.
    2. Jianwen Ren & Yingqiang Xu & Shiyuan Wang, 2018. "A Distributed Robust Dispatch Approach for Interconnected Systems with a High Proportion of Wind Power Penetration," Energies, MDPI, vol. 11(4), pages 1-18, April.
    3. Li, Xingchen & Xu, Guangcheng & Wu, Jie & Xu, Chengzhen & Zhu, Qingyuan, 2024. "Evaluation of bank efficiency by considering the uncertainty of nonperforming loans," Omega, Elsevier, vol. 126(C).
    4. Wenqing Chen & Melvyn Sim & Jie Sun & Chung-Piaw Teo, 2010. "From CVaR to Uncertainty Set: Implications in Joint Chance-Constrained Optimization," Operations Research, INFORMS, vol. 58(2), pages 470-485, April.
    5. Zhi Chen & Melvyn Sim & Huan Xu, 2019. "Distributionally Robust Optimization with Infinitely Constrained Ambiguity Sets," Operations Research, INFORMS, vol. 67(5), pages 1328-1344, September.
    6. Stefan Mišković, 2017. "A VNS-LP algorithm for the robust dynamic maximal covering location problem," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(4), pages 1011-1033, October.
    7. Sarhadi, Hassan & Naoum-Sawaya, Joe & Verma, Manish, 2020. "A robust optimization approach to locating and stockpiling marine oil-spill response facilities," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 141(C).
    8. Li, Shukai & Liu, Ronghui & Yang, Lixing & Gao, Ziyou, 2019. "Robust dynamic bus controls considering delay disturbances and passenger demand uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 123(C), pages 88-109.
    9. Jeong, Jaehee & Premsankar, Gopika & Ghaddar, Bissan & Tarkoma, Sasu, 2024. "A robust optimization approach for placement of applications in edge computing considering latency uncertainty," Omega, Elsevier, vol. 126(C).
    10. Chassein, André & Dokka, Trivikram & Goerigk, Marc, 2019. "Algorithms and uncertainty sets for data-driven robust shortest path problems," European Journal of Operational Research, Elsevier, vol. 274(2), pages 671-686.
    11. Akhtar Hussain & Van-Hai Bui & Hak-Man Kim, 2016. "Robust Optimization-Based Scheduling of Multi-Microgrids Considering Uncertainties," Energies, MDPI, vol. 9(4), pages 1-21, April.
    12. M. J. Naderi & M. S. Pishvaee, 2017. "Robust bi-objective macroscopic municipal water supply network redesign and rehabilitation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(9), pages 2689-2711, July.
    13. Kandpal, Bakul & Pareek, Parikshit & Verma, Ashu, 2022. "A robust day-ahead scheduling strategy for EV charging stations in unbalanced distribution grid," Energy, Elsevier, vol. 249(C).
    14. Jun-ya Gotoh & Michael Jong Kim & Andrew E. B. Lim, 2020. "Worst-case sensitivity," Papers 2010.10794, arXiv.org.
    15. Guo, Shiliang & Li, Pengpeng & Ma, Kai & Yang, Bo & Yang, Jie, 2022. "Robust energy management for industrial microgrid considering charging and discharging pressure of electric vehicles," Applied Energy, Elsevier, vol. 325(C).
    16. Zhang, Hanxiao & Li, Yan-Fu, 2022. "Robust optimization on redundancy allocation problems in multi-state and continuous-state series–parallel systems," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    17. Evers, L. & Dollevoet, T.A.B. & Barros, A.I. & Monsuur, H., 2011. "Robust UAV Mission Planning," Econometric Institute Research Papers EI 2011-07, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    18. Shen, Feifei & Zhao, Liang & Wang, Meihong & Du, Wenli & Qian, Feng, 2022. "Data-driven adaptive robust optimization for energy systems in ethylene plant under demand uncertainty," Applied Energy, Elsevier, vol. 307(C).
    19. Baringo, Luis & Boffino, Luigi & Oggioni, Giorgia, 2020. "Robust expansion planning of a distribution system with electric vehicles, storage and renewable units," Applied Energy, Elsevier, vol. 265(C).
    20. Mohammad Reza Ghatreh Samani & Seyyed-Mahdi Hosseini-Motlagh, 2021. "A robust framework for designing blood network in disaster relief: a real-life case," Operational Research, Springer, vol. 21(3), pages 1529-1568, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:64:y:2016:i:2:p:273-289. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.