IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v63y2015i3p639-659.html
   My bibliography  Save this article

A Constructive Approach to Estimating Pure Characteristics Demand Models with Pricing

Author

Listed:
  • Jong-Shi Pang

    (Daniel J. Epstein Department of Industrial and Systems Engineering, University of Southern California, Los Angeles, California 90089)

  • Che-Lin Su

    (The University of Chicago Booth School of Business, Chicago, Illinois 60637)

  • Yu-Ching Lee

    (Department of Industrial and Enterprise Systems Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801)

Abstract

Discrete-choice demand models are important and fundamental tools for understanding consumers’ choice behavior and for analyzing firms’ operations and pricing strategies. In these models, products are often described as a vector of observed characteristics. A consumer chooses the product that maximizes her utility, assumed to be a function of the observed product characteristics and the consumer’s preference over these product characteristics. One central task in the demand estimation literature is to infer, based on observed data, consumers’ preferences on product characteristics. We consider such an estimation problem for pure characteristics models, a class of random coefficients demand models without the idiosyncratic logit error term in a consumer’s utility function. The absence of the logit error term and the use of numerical integration to approximate the integral in aggregate market shares lead to a nonsmooth formulation of approximated market share equations. As a result, solving the approximated market share equations and estimating the model by using existing methods proposed in the econometrics literature remain computationally intractable. To overcome this difficulty, we first characterize consumers’ purchase decisions by a system of complementarity constraints. This new characterization leads to smooth approximated market share equations and allows us to cast the corresponding generalized method of moments (GMM) estimation problem essentially as a quadratic program with linear complementarity constraints, parameterized by an exponential, thus nonlinear, function of the structural parameter on price. We also extend this estimation framework to incorporate an endogenous pricing mechanism that captures the competitive profit maximization behavior of the producing firms. We provide existence results of a solution for the GMM estimator and present numerical results to demonstrate the computational effectiveness of our approach.

Suggested Citation

  • Jong-Shi Pang & Che-Lin Su & Yu-Ching Lee, 2015. "A Constructive Approach to Estimating Pure Characteristics Demand Models with Pricing," Operations Research, INFORMS, vol. 63(3), pages 639-659, June.
  • Handle: RePEc:inm:oropre:v:63:y:2015:i:3:p:639-659
    DOI: 10.1287/opre.2015.1377
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/opre.2015.1377
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.2015.1377?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jean‐Pierre Dubé & Jeremy T. Fox & Che‐Lin Su, 2012. "Improving the Numerical Performance of Static and Dynamic Aggregate Discrete Choice Random Coefficients Demand Estimation," Econometrica, Econometric Society, vol. 80(5), pages 2231-2267, September.
    2. Hansen, Lars Peter, 1982. "Large Sample Properties of Generalized Method of Moments Estimators," Econometrica, Econometric Society, vol. 50(4), pages 1029-1054, July.
    3. Che‐Lin Su & Kenneth L. Judd, 2012. "Constrained Optimization Approaches to Estimation of Structural Models," Econometrica, Econometric Society, vol. 80(5), pages 2213-2230, September.
    4. Steve Berry & Oliver B. Linton & Ariel Pakes, 2004. "Limit Theorems for Estimating the Parameters of Differentiated Product Demand Systems," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 71(3), pages 613-654.
    5. Roger Wets, 1999. "Statistical estimation from an optimization viewpoint," Annals of Operations Research, Springer, vol. 85(0), pages 79-101, January.
    6. Ackerberg, Daniel & Lanier Benkard, C. & Berry, Steven & Pakes, Ariel, 2007. "Econometric Tools for Analyzing Market Outcomes," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 6, chapter 63, Elsevier.
    7. Kalyan Talluri & Garrett van Ryzin, 2004. "Revenue Management Under a General Discrete Choice Model of Consumer Behavior," Management Science, INFORMS, vol. 50(1), pages 15-33, January.
    8. Minjae Song, 2007. "Measuring consumerwelfareinthe CPU market: anapplication of the pure-characteristics demand model," RAND Journal of Economics, RAND Corporation, vol. 38(2), pages 429-446, June.
    9. Ward Hanson & Kipp Martin, 1996. "Optimizing Multinomial Logit Profit Functions," Management Science, INFORMS, vol. 42(7), pages 992-1003, July.
    10. Gustavo Vulcano & Garrett van Ryzin & Richard Ratliff, 2012. "Estimating Primary Demand for Substitutable Products from Sales Transaction Data," Operations Research, INFORMS, vol. 60(2), pages 313-334, April.
    11. Nikhil Agarwal, 2015. "An Empirical Model of the Medical Match," American Economic Review, American Economic Association, vol. 105(7), pages 1939-1978, July.
    12. Berry, Steven & Levinsohn, James & Pakes, Ariel, 1995. "Automobile Prices in Market Equilibrium," Econometrica, Econometric Society, vol. 63(4), pages 841-890, July.
    13. Guillermo Gallego & Ruxian Wang, 2014. "Multiproduct Price Optimization and Competition Under the Nested Logit Model with Product-Differentiated Price Sensitivities," Operations Research, INFORMS, vol. 62(2), pages 450-461, April.
    14. Steven Berry & Ariel Pakes, 2007. "The Pure Characteristics Demand Model," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 48(4), pages 1193-1225, November.
    15. Lijie Bai & John Mitchell & Jong-Shi Pang, 2013. "On convex quadratic programs with linear complementarity constraints," Computational Optimization and Applications, Springer, vol. 54(3), pages 517-554, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liang Chen & Eugene Choo & Alfred Galichon & Simon Weber, 2021. "Matching Function Equilibria with Partial Assignment: Existence, Uniqueness and Estimation," Working Papers hal-03936296, HAL.
    2. Odran Bonnet & Alfred Galichon & Yu-Wei Hsieh & Keith O’Hara & Matt Shum, 2022. "Yogurts Choose Consumers? Estimation of Random-Utility Models via Two-Sided Matching," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 89(6), pages 3085-3114.
    3. Dobbels, Gregory & Tavakalov, Suren, 2024. "Not in My Back Yard: The Local Political Economy of Residential Land-Use Regulations," MPRA Paper 122679, University Library of Munich, Germany.
    4. Amitrajeet A. Batabyal & Hamid Beladi, 2016. "A Game Model of New and Remanufactured Goods, Brown and Green Consumers, and Market Share Dominance," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 14(2), pages 345-354, December.
    5. Liang Chen & Eugene Choo & Alfred Galichon & Simon Weber, 2021. "Matching Function Equilibria with Partial Assignment: Existence, Uniqueness and Estimation," Papers 2102.02071, arXiv.org, revised Sep 2023.
    6. Yan, Xiaoming & Zhao, Wenhan & Yu, Yugang, 2022. "Optimal product line design with reference price effects," European Journal of Operational Research, Elsevier, vol. 302(3), pages 1045-1062.
    7. Liang Chen & Eugene Choo & Alfred Galichon & Simon Weber, 2021. "Matching Function Equilibria with Partial Assignment: Existence, Uniqueness and Estimation," SciencePo Working papers Main hal-03936296, HAL.
    8. Alfred Galichon & Simon Weber, 2024. "Matching under Imperfectly Transferable Utility," Papers 2403.05222, arXiv.org, revised Oct 2024.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anindya Ghose & Sang Pil Han, 2014. "Estimating Demand for Mobile Applications in the New Economy," Management Science, INFORMS, vol. 60(6), pages 1470-1488, June.
    2. Moon, Hyungsik Roger & Shum, Matthew & Weidner, Martin, 2018. "Estimation of random coefficients logit demand models with interactive fixed effects," Journal of Econometrics, Elsevier, vol. 206(2), pages 613-644.
    3. Gautam Gowrisankaran & Marc Rysman, 2012. "Dynamics of Consumer Demand for New Durable Goods," Journal of Political Economy, University of Chicago Press, vol. 120(6), pages 1173-1219.
    4. Reynaert, Mathias & Verboven, Frank, 2014. "Improving the performance of random coefficients demand models: The role of optimal instruments," Journal of Econometrics, Elsevier, vol. 179(1), pages 83-98.
    5. Joao Macieira & Pedro Pereira & Joao Vareda, 2013. "Bundling Incentives in Markets with Product Complementarities: The Case of Triple-Play," Working Papers 13-15, NET Institute.
    6. Kaiser, Ulrich & Mendez, Susan J. & Rønde, Thomas & Ullrich, Hannes, 2014. "Regulation of pharmaceutical prices: Evidence from a reference price reform in Denmark," Journal of Health Economics, Elsevier, vol. 36(C), pages 174-187.
    7. Gallego, Guillermo & Li, Anran & Truong, Van-Anh & Wang, Xinshang, 2020. "Approximation algorithms for product framing and pricing," LSE Research Online Documents on Economics 101983, London School of Economics and Political Science, LSE Library.
    8. Mariuzzo, Franco & Walsh, Patrick Paul & Whelan, Ciara, 2010. "Coverage of retail stores and discrete choice models of demand: Estimating price elasticities and welfare effects," International Journal of Industrial Organization, Elsevier, vol. 28(5), pages 555-578, September.
    9. Christos Genakos, 2004. "DIFFERENTIAL MERGER EFFECTS: The Case of the Personal Computer Industry," STICERD - Economics of Industry Papers 39, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    10. Yang Li & Brett R. Gordon & Oded Netzer, 2018. "An Empirical Study of National vs. Local Pricing by Chain Stores Under Competition," Marketing Science, INFORMS, vol. 37(5), pages 812-837, September.
    11. Hongmin Li & Scott Webster & Gwangjae Yu, 2020. "Product Design Under Multinomial Logit Choices: Optimization of Quality and Prices in an Evolving Product Line," Manufacturing & Service Operations Management, INFORMS, vol. 22(5), pages 1011-1025, September.
    12. Freyberger, Joachim, 2015. "Asymptotic theory for differentiated products demand models with many markets," Journal of Econometrics, Elsevier, vol. 185(1), pages 162-181.
    13. Liang Chen & Eugene Choo & Alfred Galichon & Simon Weber, 2023. "Existence of a Competitive Equilibrium with Substitutes, with Applications to Matching and Discrete Choice Models," Papers 2309.11416, arXiv.org.
    14. Joonhwi Joo & Ali Hortacsu, 2016. "Semiparametric estimation of CES demand system with observed and unobserved product characteristics," 2016 Meeting Papers 36, Society for Economic Dynamics.
    15. Amit Gandhi & Zhentong Lu & Xiaoxia Shi, 2023. "Estimating demand for differentiated products with zeroes in market share data," Quantitative Economics, Econometric Society, vol. 14(2), pages 381-418, May.
    16. Yalç{i}n Akçay & Harihara Prasad Natarajan & Susan H. Xu, 2010. "Joint Dynamic Pricing of Multiple Perishable Products Under Consumer Choice," Management Science, INFORMS, vol. 56(8), pages 1345-1361, August.
    17. Sun, Yutec & Ishihara, Masakazu, 2019. "A computationally efficient fixed point approach to dynamic structural demand estimation," Journal of Econometrics, Elsevier, vol. 208(2), pages 563-584.
    18. Strauss, Arne K. & Klein, Robert & Steinhardt, Claudius, 2018. "A review of choice-based revenue management: Theory and methods," European Journal of Operational Research, Elsevier, vol. 271(2), pages 375-387.
    19. Guillermo Gallego & Anran Li & Van-Anh Truong & Xinshang Wang, 2020. "Approximation Algorithms for Product Framing and Pricing," Operations Research, INFORMS, vol. 68(1), pages 134-160, January.
    20. Dunker, Fabian & Hoderlein, Stefan & Kaido, Hiroaki, 2014. "Nonparametric Identification of Endogenous and Heterogeneous Aggregate Demand Models: Complements, Bundles and the Market Level," Economics Series 307, Institute for Advanced Studies.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:63:y:2015:i:3:p:639-659. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.