IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v55y2007i6p1090-1103.html
   My bibliography  Save this article

Overlapping Variance Estimators for Simulation

Author

Listed:
  • Christos Alexopoulos

    (H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332)

  • Nilay Tanık Argon

    (Department of Statistics and Operations Research, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599)

  • David Goldsman

    (H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332)

  • Gamze Tokol

    (Decision Analytics, Atlanta, Georgia 30306)

  • James R. Wilson

    (Edward P. Fitts Department of Industrial and Systems Engineering, North Carolina State University, Raleigh, North Carolina 27695)

Abstract

To estimate the variance parameter (i.e., the sum of covariances at all lags) for a steady-state simulation output process, we formulate certain statistics that are computed from overlapping batches separately and then averaged over all such batches. We form overlapping versions of the area and Cramér--von Mises estimators using the method of standardized time series. For these estimators, we establish (i) their limiting distributions as the sample size increases while the ratio of the sample size to the batch size remains fixed; and (ii) their mean-square convergence to the variance parameter as both the batch size and the ratio of the sample size to the batch size increase. Compared with their counterparts computed from nonoverlapping batches, the estimators computed from overlapping batches asymptotically achieve reduced variance while maintaining the same bias as the sample size increases; moreover, the new variance estimators usually achieve similar improvements compared with the conventional variance estimators based on nonoverlapping or overlapping batch means. In follow-up work, we present several analytical and Monte Carlo examples, and we formulate efficient procedures for computing the overlapping estimators with only order-of-sample-size effort.

Suggested Citation

  • Christos Alexopoulos & Nilay Tanık Argon & David Goldsman & Gamze Tokol & James R. Wilson, 2007. "Overlapping Variance Estimators for Simulation," Operations Research, INFORMS, vol. 55(6), pages 1090-1103, December.
  • Handle: RePEc:inm:oropre:v:55:y:2007:i:6:p:1090-1103
    DOI: 10.1287/opre.1070.0475
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/opre.1070.0475
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.1070.0475?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Halim Damerdji, 1995. "Mean-Square Consistency of the Variance Estimator in Steady-State Simulation Output Analysis," Operations Research, INFORMS, vol. 43(2), pages 282-291, April.
    2. Natalie M. Steiger & James R. Wilson, 2001. "Convergence Properties of the Batch Means Method for Simulation Output Analysis," INFORMS Journal on Computing, INFORMS, vol. 13(4), pages 277-293, November.
    3. Wheyming Tina Song & Bruce W. Schmeiser, 1993. "Variance of the Sample Mean: Properties and Graphs of Quadratic-Form Estimators," Operations Research, INFORMS, vol. 41(3), pages 501-517, June.
    4. Halim Damerdji, 1991. "Strong Consistency and Other Properties of the Spectral Variance Estimator," Management Science, INFORMS, vol. 37(11), pages 1424-1440, November.
    5. Chiahon Chien & David Goldsman & Benjamin Melamed, 1997. "Large-Sample Results for Batch Means," Management Science, INFORMS, vol. 43(9), pages 1288-1295, September.
    6. Peter W. Glynn & Donald L. Iglehart, 1990. "Simulation Output Analysis Using Standardized Time Series," Mathematics of Operations Research, INFORMS, vol. 15(1), pages 1-16, February.
    7. David Goldsman & Marc Meketon & Lee Schruben, 1990. "Properties of Standardized Time Series Weighted Area Variance Estimators," Management Science, INFORMS, vol. 36(5), pages 602-612, May.
    8. Wheyming Tina Song & Bruce W. Schmeiser, 1995. "Optimal Mean-Squared-Error Batch Sizes," Management Science, INFORMS, vol. 41(1), pages 110-123, January.
    9. David Goldsman & Lee Schruben, 1990. "Note---New Confidence Interval Estimators Using Standardized Time Series," Management Science, INFORMS, vol. 36(3), pages 393-397, March.
    10. Bruce Schmeiser, 1982. "Batch Size Effects in the Analysis of Simulation Output," Operations Research, INFORMS, vol. 30(3), pages 556-568, June.
    11. Halim Damerdji, 1994. "Strong Consistency of the Variance Estimator in Steady-State Simulation Output Analysis," Mathematics of Operations Research, INFORMS, vol. 19(2), pages 494-512, May.
    12. Lee Schruben, 1983. "Confidence Interval Estimation Using Standardized Time Series," Operations Research, INFORMS, vol. 31(6), pages 1090-1108, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Song-Hee Kim & Ward Whitt, 2013. "Statistical Analysis with Little's Law," Operations Research, INFORMS, vol. 61(4), pages 1030-1045, August.
    2. Meterelliyoz, Melike & Alexopoulos, Christos & Goldsman, David, 2012. "Folded overlapping variance estimators for simulation," European Journal of Operational Research, Elsevier, vol. 220(1), pages 135-146.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christos Alexopoulos & David Goldsman & Gamze Tokol, 2001. "Properties of Batched Quadratic-Form Variance Parameter Estimators for Simulations," INFORMS Journal on Computing, INFORMS, vol. 13(2), pages 149-156, May.
    2. Kin Wai Chan & Chun Yip Yau, 2017. "High-order Corrected Estimator of Asymptotic Variance with Optimal Bandwidth," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 44(4), pages 866-898, December.
    3. Meterelliyoz, Melike & Alexopoulos, Christos & Goldsman, David, 2012. "Folded overlapping variance estimators for simulation," European Journal of Operational Research, Elsevier, vol. 220(1), pages 135-146.
    4. David Goldsman & Seong-Hee Kim & William S. Marshall & Barry L. Nelson, 2002. "Ranking and Selection for Steady-State Simulation: Procedures and Perspectives," INFORMS Journal on Computing, INFORMS, vol. 14(1), pages 2-19, February.
    5. David F. Muñoz & Peter W. Glynn, 2001. "Multivariate Standardized Time Series for Steady-State Simulation Output Analysis," Operations Research, INFORMS, vol. 49(3), pages 413-422, June.
    6. Christos Alexopoulos & Nilay Tanık Argon & David Goldsman & Natalie M. Steiger & Gamze Tokol & James R. Wilson, 2007. "Efficient Computation of Overlapping Variance Estimators for Simulation," INFORMS Journal on Computing, INFORMS, vol. 19(3), pages 314-327, August.
    7. Song, Wheyming Tina & Chih, Mingchang, 2013. "Run length not required: Optimal-mse dynamic batch means estimators for steady-state simulations," European Journal of Operational Research, Elsevier, vol. 229(1), pages 114-123.
    8. Gamze Tokol & David Goldsman & Daniel H. Ockerman & James J. Swain, 1998. "Standardized Time Series Lp-Norm Variance Estimators for Simulations," Management Science, INFORMS, vol. 44(2), pages 234-245, February.
    9. Seong-Hee Kim & Barry L. Nelson, 2006. "On the Asymptotic Validity of Fully Sequential Selection Procedures for Steady-State Simulation," Operations Research, INFORMS, vol. 54(3), pages 475-488, June.
    10. Song, Wheyming Tina, 1996. "On the estimation of optimal batch sizes in the analysis of simulation output," European Journal of Operational Research, Elsevier, vol. 88(2), pages 304-319, January.
    11. David Goldsman & Keebom Kang & Seong‐Hee Kim & Andrew F. Seila & Gamze Tokol, 2007. "Combining standardized time series area and Cramér–von Mises variance estimators," Naval Research Logistics (NRL), John Wiley & Sons, vol. 54(4), pages 384-396, June.
    12. David Goldsman & Keebom Kang & Andrew F. Seila, 1999. "Cramér-von Mises Variance Estimators for Simulations," Operations Research, INFORMS, vol. 47(2), pages 299-309, April.
    13. Song, Wheyming T. & Chih, Mingchang, 2010. "Extended dynamic partial-overlapping batch means estimators for steady-state simulations," European Journal of Operational Research, Elsevier, vol. 203(3), pages 640-651, June.
    14. Halim Damerdji & David Goldsman, 1995. "Consistency of several variants of the standardized time series area variance estimator," Naval Research Logistics (NRL), John Wiley & Sons, vol. 42(8), pages 1161-1176, December.
    15. Tûba Aktaran‐Kalaycı & Christos Alexopoulos & Nilay Tanık Argon & David Goldsman & James R. Wilson, 2007. "Exact expected values of variance estimators for simulation," Naval Research Logistics (NRL), John Wiley & Sons, vol. 54(4), pages 397-410, June.
    16. Ying Liu & Dootika Vats & James M. Flegal, 2022. "Batch Size Selection for Variance Estimators in MCMC," Methodology and Computing in Applied Probability, Springer, vol. 24(1), pages 65-93, March.
    17. James M. Calvin & Marvin K. Nakayama, 2006. "Permuted Standardized Time Series for Steady-State Simulations," Mathematics of Operations Research, INFORMS, vol. 31(2), pages 351-368, May.
    18. David Goldsman & Lee W. Schruben & James J. Swain, 1994. "Tests for transient means in simulated time series," Naval Research Logistics (NRL), John Wiley & Sons, vol. 41(2), pages 171-187, March.
    19. Song, Wheyming Tina, 2019. "The Song rule outperforms optimal-batch-size variance estimators in simulation output analysis," European Journal of Operational Research, Elsevier, vol. 275(3), pages 1072-1082.
    20. Sarantis Tsiaplias, 2007. "A Metropolis-in-Gibbs Sampler for Estimating Equity Market Factors," Melbourne Institute Working Paper Series wp2007n18, Melbourne Institute of Applied Economic and Social Research, The University of Melbourne.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:55:y:2007:i:6:p:1090-1103. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.