IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v287y2020i2p572-582.html
   My bibliography  Save this article

Modelling Efficiency in Regional Innovation Systems: A Two-Stage Data Envelopment Analysis Problem with Shared Outputs within Groups of Decision-Making Units

Author

Listed:
  • Avilés-Sacoto, Sonia Valeria
  • Cook, Wade D.
  • Güemes-Castorena, David
  • Zhu, Joe

Abstract

Regional Innovation Systems (RISs) literature usually focuses on the comparative performance of different regions and analyzes how each region is utilizing its own dedicated resources. The available resources can be shared by many firms which are grouped by industry, just as universities collaborate with many firms in many industries. This paper studies a region in Mexico and the firms within that region with the aim being to identify which of those firms are using the available resources in the best way. We use Data Envelopment Analysis (DEA) as a methodology for evaluating the relative efficiencies of the firms, based on their multiple inputs and outputs, and considering their processes as being divided into two stages. An important problem in this setting is that the two-stage process exhibits the characteristic of having outputs being shared among the firms in each industry; this makes it more challenging to determine independent efficiency scores for each firm in each industry, where we need to cater for this phenomenon. To address this, the current article presents a methodology for measuring efficiency in situations where Decision Making Units (DMUs) share outputs with other units within the same group. By solving this problem, we can identify the best-performers and their strategies regarding how they use the available resources in the region.

Suggested Citation

  • Avilés-Sacoto, Sonia Valeria & Cook, Wade D. & Güemes-Castorena, David & Zhu, Joe, 2020. "Modelling Efficiency in Regional Innovation Systems: A Two-Stage Data Envelopment Analysis Problem with Shared Outputs within Groups of Decision-Making Units," European Journal of Operational Research, Elsevier, vol. 287(2), pages 572-582.
  • Handle: RePEc:eee:ejores:v:287:y:2020:i:2:p:572-582
    DOI: 10.1016/j.ejor.2020.04.052
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221720304057
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2020.04.052?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Meuer, Johannes & Rupietta, Christian & Backes-Gellner, Uschi, 2015. "Layers of co-existing innovation systems," Research Policy, Elsevier, vol. 44(4), pages 888-910.
    2. Xiaolan Fu, 2008. "Foreign Direct Investment, Absorptive Capacity and Regional Innovation Capabilities: Evidence from China," Oxford Development Studies, Taylor & Francis Journals, vol. 36(1), pages 89-110.
    3. Watkins, Andrew & Papaioannou, Theo & Mugwagwa, Julius & Kale, Dinar, 2015. "National innovation systems and the intermediary role of industry associations in building institutional capacities for innovation in developing countries: A critical review of the literature," Research Policy, Elsevier, vol. 44(8), pages 1407-1418.
    4. Wade D. Cook & Joe Zhu, 2011. "Multiple Variable Proportionality in Data Envelopment Analysis," Operations Research, INFORMS, vol. 59(4), pages 1024-1032, August.
    5. Cook, Wade D. & Hababou, Moez, 2001. "Sales performance measurement in bank branches," Omega, Elsevier, vol. 29(4), pages 299-307, August.
    6. Tsai, P. F. & Mar Molinero, C., 2002. "A variable returns to scale data envelopment analysis model for the joint determination of efficiencies with an example of the UK health service," European Journal of Operational Research, Elsevier, vol. 141(1), pages 21-38, August.
    7. Guan, Jiancheng & Chen, Kaihua, 2012. "Modeling the relative efficiency of national innovation systems," Research Policy, Elsevier, vol. 41(1), pages 102-115.
    8. Chen Kaihua & Kou Mingting, 2014. "Staged efficiency and its determinants of regional innovation systems: a two-step analytical procedure," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 52(2), pages 627-657, March.
    9. Wade Cook & Moez Hababou & Hans Tuenter, 2000. "Multicomponent Efficiency Measurement and Shared Inputs in Data Envelopment Analysis: An Application to Sales and Service Performance in Bank Branches," Journal of Productivity Analysis, Springer, vol. 14(3), pages 209-224, November.
    10. Chen, Yao & Du, Juan & David Sherman, H. & Zhu, Joe, 2010. "DEA model with shared resources and efficiency decomposition," European Journal of Operational Research, Elsevier, vol. 207(1), pages 339-349, November.
    11. Doloreux, David & Parto, Saeed, 2005. "Regional innovation systems: Current discourse and unresolved issues," Technology in Society, Elsevier, vol. 27(2), pages 133-153.
    12. Raha Imanirad & Wade D. Cook & Joe Zhu, 2013. "Partial input to output impacts in DEA: Production considerations and resource sharing among business subunits," Naval Research Logistics (NRL), John Wiley & Sons, vol. 60(3), pages 190-207, April.
    13. Fagerberg, Jan & Srholec, Martin, 2008. "National innovation systems, capabilities and economic development," Research Policy, Elsevier, vol. 37(9), pages 1417-1435, October.
    14. R. D. Banker & A. Charnes & W. W. Cooper, 1984. "Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis," Management Science, INFORMS, vol. 30(9), pages 1078-1092, September.
    15. Cook, Wade D. & Zhu, Joe & Bi, Gongbing & Yang, Feng, 2010. "Network DEA: Additive efficiency decomposition," European Journal of Operational Research, Elsevier, vol. 207(2), pages 1122-1129, December.
    16. Wang, Yuandi & Vanhaverbeke, Wim & Roijakkers, Nadine, 2012. "Exploring the impact of open innovation on national systems of innovation — A theoretical analysis," Technological Forecasting and Social Change, Elsevier, vol. 79(3), pages 419-428.
    17. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    18. Kwon, Seokbeom & Motohashi, Kazuyuki, 2017. "How institutional arrangements in the National Innovation System affect industrial competitiveness: A study of Japan and the U.S. with multiagent simulation," Technological Forecasting and Social Change, Elsevier, vol. 115(C), pages 221-235.
    19. Chen, Kaihua & Kou, Mingting & Fu, Xiaolan, 2018. "Evaluation of multi-period regional R&D efficiency: An application of dynamic DEA to China's regional R&D systems," Omega, Elsevier, vol. 74(C), pages 103-114.
    20. David Doloreux & Igone Porto Gomez, 2017. "A review of (almost) 20 years of regional innovation systems research," European Planning Studies, Taylor & Francis Journals, vol. 25(3), pages 371-387, March.
    21. Jon Zabala-Iturriagagoitia & Peter Voigt & Antonio Gutierrez-Gracia & Fernando Jimenez-Saez, 2007. "Regional Innovation Systems: How to Assess Performance," Regional Studies, Taylor & Francis Journals, vol. 41(5), pages 661-672.
    22. Cook, Wade D. & Liang, Liang & Zhu, Joe, 2010. "Measuring performance of two-stage network structures by DEA: A review and future perspective," Omega, Elsevier, vol. 38(6), pages 423-430, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Miao, Cheng-lin & Duan, Meng-meng & Zuo, Yang & Wu, Xin-yu, 2021. "Spatial heterogeneity and evolution trend of regional green innovation efficiency--an empirical study based on panel data of industrial enterprises in China's provinces," Energy Policy, Elsevier, vol. 156(C).
    2. Lin, Sheng-Wei & Lu, Wen-Min, 2024. "Discretionary investment managers evaluation in pension fund: Shared input dynamic network DEA approach," Omega, Elsevier, vol. 127(C).
    3. Avilés-Sacoto, Estefanía Caridad & Avilés-Sacoto, Sonia Valeria & Güemes-Castorena, David & Cook, Wade D., 2021. "Environmental performance evaluation: A state-level DEA analysis," Socio-Economic Planning Sciences, Elsevier, vol. 78(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kao, Chiang, 2014. "Network data envelopment analysis: A review," European Journal of Operational Research, Elsevier, vol. 239(1), pages 1-16.
    2. Ibrahim Alnafrah, 2021. "Efficiency evaluation of BRICS’s national innovation systems based on bias-corrected network data envelopment analysis," Journal of Innovation and Entrepreneurship, Springer, vol. 10(1), pages 1-28, December.
    3. Lim, Dong-Joon & Kim, Moon-Su, 2022. "Measuring dynamic efficiency with variable time lag effects," Omega, Elsevier, vol. 108(C).
    4. Liu, John S. & Lu, Louis Y.Y. & Lu, Wen-Min, 2016. "Research fronts in data envelopment analysis," Omega, Elsevier, vol. 58(C), pages 33-45.
    5. Majid Azadi & Balal Karimi & William Ho & Reza Farzipoor Saen, 2022. "Assessing green performance of power plants by multiple hybrid returns to scale technologies," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 44(4), pages 1177-1211, December.
    6. Sonia Valeria Avilés-Sacoto & Wade D. Cook & David Güemes-Castorena & Francisco Benita & Hector Ceballos & Joe Zhu, 2018. "Evaluating the Efficiencies of Academic Research Groups: A Problem of Shared Outputs," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 35(06), pages 1-22, December.
    7. Raha Imanirad & Wade D. Cook & Joe Zhu, 2013. "Partial input to output impacts in DEA: Production considerations and resource sharing among business subunits," Naval Research Logistics (NRL), John Wiley & Sons, vol. 60(3), pages 190-207, April.
    8. Barbero, Javier & Zabala-Iturriagagoitia, Jon Mikel & Zofío, José L., 2021. "Is more always better? On the relevance of decreasing returns to scale on innovation," Technovation, Elsevier, vol. 107(C).
    9. Vitor Miguel Ribeiro & Celeste Varum & Ana Dias Daniel, 2021. "Introducing microeconomic foundation in data envelopment analysis: effects of the ex ante regulation principle on regional performance," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 12(3), pages 1215-1244, September.
    10. Dorota Ciołek & Anna Golejewska, 2022. "Efficiency Determinants of Regional Innovation Systems in Polish Subregions," Gospodarka Narodowa. The Polish Journal of Economics, Warsaw School of Economics, issue 3, pages 24-45.
    11. Cao, Ting & Cook, Wade D. & Kristal, M. Murat, 2022. "Has the technological investment been worth it? Assessing the aggregate efficiency of non-homogeneous bank holding companies in the digital age," Technological Forecasting and Social Change, Elsevier, vol. 178(C).
    12. Chen, Xiafei & Liu, Zhiying & Zhu, Qingyuan, 2020. "Reprint of "Performance evaluation of China's high-tech innovation process :Analysis based on the innovation value chain"," Technovation, Elsevier, vol. 94.
    13. Chen, Xiafei & Liu, Zhiying & Zhu, Qingyuan, 2018. "Performance evaluation of China's high-tech innovation process: Analysis based on the innovation value chain," Technovation, Elsevier, vol. 74, pages 42-53.
    14. Erzurumlu, S. Sinan & Erzurumlu, Yaman O. & Yoon, YongKi, 2022. "National innovation systems and dynamic impact of institutional structures on national innovation capability: A configurational approach with the OKID method," Technovation, Elsevier, vol. 114(C).
    15. Ang, Sheng & Chen, Chien-Ming, 2016. "Pitfalls of decomposition weights in the additive multi-stage DEA model," Omega, Elsevier, vol. 58(C), pages 139-153.
    16. Mergoni, Anna & Soncin, Mara & Agasisti, Tommaso, 2023. "The effect of ICT on schools’ efficiency: Empirical evidence on 23 European countries," Omega, Elsevier, vol. 119(C).
    17. Chen, Kaihua & Kou, Mingting & Fu, Xiaolan, 2018. "Evaluation of multi-period regional R&D efficiency: An application of dynamic DEA to China's regional R&D systems," Omega, Elsevier, vol. 74(C), pages 103-114.
    18. Ching-Chin Chern & Tzi-Yuan Chou & Bo Hsiao, 2016. "Assessing the efficiency of supply chain scheduling algorithms using data envelopment analysis," Information Systems and e-Business Management, Springer, vol. 14(4), pages 823-856, November.
    19. Sanjeet Singh & Prabhat Ranjan, 2018. "Efficiency analysis of non-homogeneous parallel sub-unit systems for the performance measurement of higher education," Annals of Operations Research, Springer, vol. 269(1), pages 641-666, October.
    20. Rita Shakouri & Maziar Salahi & Sohrab Kordrostami & Jie Wu, 2019. "Flexible measure in the presence of the partial input to output impacts process," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 29(3), pages 77-98.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:287:y:2020:i:2:p:572-582. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.