IDEAS home Printed from https://ideas.repec.org/a/inm/orijoc/v35y2023i5p929-951.html
   My bibliography  Save this article

Heterogeneous Multi-resource Planning and Allocation Under Stochastic Demand

Author

Listed:
  • Arden Baxter

    (H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332; Center for Health and Humanitarian Systems, Georgia Institute of Technology, Atlanta, Georgia 30332)

  • Pinar Keskinocak

    (H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332; Center for Health and Humanitarian Systems, Georgia Institute of Technology, Atlanta, Georgia 30332)

  • Mohit Singh

    (H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332)

Abstract

We study the capacity planning and allocation decisions for multiple heterogeneous resources, considering potential demand scenarios, where each demand requests a subset of the available resource types simultaneously at a specified time, location, and duration ( smRmD ). We model this problem as a two-stage stochastic integer program and consider two variants for the objective function: (a) maximize the expected reward of demands met over all scenarios, subject to a budget B for resources, and (b) maximize the expected reward of demands met over all scenarios minus the cost of resources. Contributions of this work include (i) a thorough complexity analysis of smRmD and its variants, (ii) analysis of structural properties, (iii) development of various approximation algorithms using the unique structural properties of smRmD and its variants, and (iv) an extensive computational study to explore the ease with which exact and approximate solutions may be found.

Suggested Citation

  • Arden Baxter & Pinar Keskinocak & Mohit Singh, 2023. "Heterogeneous Multi-resource Planning and Allocation Under Stochastic Demand," INFORMS Journal on Computing, INFORMS, vol. 35(5), pages 929-951, September.
  • Handle: RePEc:inm:orijoc:v:35:y:2023:i:5:p:929-951
    DOI: 10.1287/ijoc.2023.1298
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/ijoc.2023.1298
    Download Restriction: no

    File URL: https://libkey.io/10.1287/ijoc.2023.1298?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Mete, Huseyin Onur & Zabinsky, Zelda B., 2010. "Stochastic optimization of medical supply location and distribution in disaster management," International Journal of Production Economics, Elsevier, vol. 126(1), pages 76-84, July.
    2. Mehmet A. Begen & Retsef Levi & Maurice Queyranne, 2012. "Technical Note---A Sampling-Based Approach to Appointment Scheduling," Operations Research, INFORMS, vol. 60(3), pages 675-681, June.
    3. Wang, Zekai & Ding, Tao & Jia, Wenhao & Huang, Can & Mu, Chenggang & Qu, Ming & Shahidehpour, Mohammad & Yang, Yongheng & Blaabjerg, Frede & Li, Li & Wang, Kang & Chi, Fangde, 2022. "Multi-stage stochastic programming for resilient integrated electricity and natural gas distribution systems against typhoon natural disaster attacks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    4. Soovin Yoon & Laura A. Albert & Veronica M. White, 2021. "A Stochastic Programming Approach for Locating and Dispatching Two Types of Ambulances," Transportation Science, INFORMS, vol. 55(2), pages 275-296, March.
    5. G Barbarosoǧlu & Y Arda, 2004. "A two-stage stochastic programming framework for transportation planning in disaster response," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(1), pages 43-53, January.
    6. Paul, Jomon A. & Zhang, Minjiao, 2019. "Supply location and transportation planning for hurricanes: A two-stage stochastic programming framework," European Journal of Operational Research, Elsevier, vol. 274(1), pages 108-125.
    7. Arden Baxter & Pinar Keskinocak & Mohit Singh, 2022. "Heterogeneous Multi-resource Allocation with Subset Demand Requests," INFORMS Journal on Computing, INFORMS, vol. 34(5), pages 2389-2399, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Qingyi & Liu, Zhuomeng & Jiang, Peng & Luo, Li, 2022. "A stochastic programming model for emergency supplies pre-positioning, transshipment and procurement in a regional healthcare coalition," Socio-Economic Planning Sciences, Elsevier, vol. 82(PB).
    2. Ying Lu & Shuqi Sun, 2020. "Scenario-Based Allocation of Emergency Resources in Metro Emergencies: A Model Development and a Case Study of Nanjing Metro," Sustainability, MDPI, vol. 12(16), pages 1-21, August.
    3. Yanbin Chang & Yongjia Song & Burak Eksioglu, 2022. "A stochastic look-ahead approach for hurricane relief logistics operations planning under uncertainty," Annals of Operations Research, Springer, vol. 319(1), pages 1231-1263, December.
    4. Lu, Chung-Cheng & Ying, Kuo-Ching & Chen, Hui-Ju, 2016. "Real-time relief distribution in the aftermath of disasters – A rolling horizon approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 93(C), pages 1-20.
    5. Wilson, Duncan T. & Hawe, Glenn I. & Coates, Graham & Crouch, Roger S., 2013. "A multi-objective combinatorial model of casualty processing in major incident response," European Journal of Operational Research, Elsevier, vol. 230(3), pages 643-655.
    6. Yagci Sokat, Kezban & Dolinskaya, Irina S. & Smilowitz, Karen & Bank, Ryan, 2018. "Incomplete information imputation in limited data environments with application to disaster response," European Journal of Operational Research, Elsevier, vol. 269(2), pages 466-485.
    7. Afshin Kamyabniya & M. M. Lotfi & Mohsen Naderpour & Yuehwern Yih, 2018. "Robust Platelet Logistics Planning in Disaster Relief Operations Under Uncertainty: a Coordinated Approach," Information Systems Frontiers, Springer, vol. 20(4), pages 759-782, August.
    8. Laura Laguna-Salvadó & Matthieu Lauras & Uche Okongwu & Tina Comes, 2019. "A multicriteria Master Planning DSS for a sustainable humanitarian supply chain," Annals of Operations Research, Springer, vol. 283(1), pages 1303-1343, December.
    9. Rennemo, Sigrid Johansen & Rø, Kristina Fougner & Hvattum, Lars Magnus & Tirado, Gregorio, 2014. "A three-stage stochastic facility routing model for disaster response planning," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 62(C), pages 116-135.
    10. Anna Nagurney & Mojtaba Salarpour & June Dong & Ladimer S. Nagurney, 2020. "A Stochastic Disaster Relief Game Theory Network Model," SN Operations Research Forum, Springer, vol. 1(2), pages 1-33, June.
    11. Edrissi, Ali & Poorzahedy, Hossain & Nassiri, Habibollah & Nourinejad, Mehdi, 2013. "A multi-agent optimization formulation of earthquake disaster prevention and management," European Journal of Operational Research, Elsevier, vol. 229(1), pages 261-275.
    12. Pouraliakbari-Mamaghani, Mahsa & Saif, Ahmed & Kamal, Noreen, 2023. "Reliable design of a congested disaster relief network: A two-stage stochastic-robust optimization approach," Socio-Economic Planning Sciences, Elsevier, vol. 86(C).
    13. Ming Zhang & Yu Zhang & Zhifeng Qiu & Hanlin Wu, 2019. "Two-Stage Covering Location Model for Air–Ground Medical Rescue System," Sustainability, MDPI, vol. 11(12), pages 1-21, June.
    14. Caunhye, Aakil M. & Nie, Xiaofeng & Pokharel, Shaligram, 2012. "Optimization models in emergency logistics: A literature review," Socio-Economic Planning Sciences, Elsevier, vol. 46(1), pages 4-13.
    15. Beheshtian, Arash & Donaghy, Kieran P. & Richard Geddes, R. & Oliver Gao, H., 2018. "Climate-adaptive planning for the long-term resilience of transportation energy infrastructure," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 113(C), pages 99-122.
    16. Caunhye, Aakil M. & Zhang, Yidong & Li, Mingzhe & Nie, Xiaofeng, 2016. "A location-routing model for prepositioning and distributing emergency supplies," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 90(C), pages 161-176.
    17. Kunz, Nathan & Reiner, Gerald & Gold, Stefan, 2014. "Investing in disaster management capabilities versus pre-positioning inventory: A new approach to disaster preparedness," International Journal of Production Economics, Elsevier, vol. 157(C), pages 261-272.
    18. Junhu Ruan & Xuping Wang & Yan Shi, 2014. "A Two-Stage Approach for Medical Supplies Intermodal Transportation in Large-Scale Disaster Responses," IJERPH, MDPI, vol. 11(11), pages 1-29, October.
    19. Moddassir Khan Nayeem & Gyu M. Lee, 2021. "Robust Design of Relief Distribution Networks Considering Uncertainty," Sustainability, MDPI, vol. 13(16), pages 1-24, August.
    20. John B. Coles & Jing Zhang & Jun Zhuang, 2022. "Bridging the research-practice gap in disaster relief: using the IFRC Code of Conduct to develop an aid model," Annals of Operations Research, Springer, vol. 312(2), pages 1337-1357, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:orijoc:v:35:y:2023:i:5:p:929-951. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.