IDEAS home Printed from https://ideas.repec.org/a/inm/orijoc/v33y2021i3p931-948.html
   My bibliography  Save this article

The Risk-Averse Static Stochastic Knapsack Problem

Author

Listed:
  • Yasemin Merzifonluoglu

    (Tilburg School of Economics and Management, Tilburg University, 5000 LE Tilburg, Netherlands)

  • Joseph Geunes

    (Department of Industrial and Systems Engineering, Texas A&M University, College Station, Texas 77843)

Abstract

This paper considers a single-resource allocation problem for multiple items with random, independent resource consumption values, known as the static stochastic knapsack problem (SSKP). Whereas the existing SSKP literature generally assumes a risk-neutral objective using an expected value approach, such an approach can maximize expected profit while admitting the possibility of very high losses in some unfavorable scenarios. Because of this, we consider two popular risk measures, conditional value-at-risk (CVaR) and a mean-standard deviation trade-off, in order to address risk within this problem class. Optimizing the trade-offs associated with these risk measures presents significant modeling and computational challenges. To address these challenges, we first provide mixed-integer linear programming models using a scenario-based approach, which can be exploited to provide exact solutions for discrete distributions. For general distributions, a sample average approximation method provides approximate solutions. We then propose a general mixed integer nonlinear optimization modeling approach for the special case of normally distributed resource requirements. This modeling approach incorporates a new class of normalized penalty functions that account for both the expected costs and risks associated with uncertainty, and it can be specialized to a broad class of risk measures, including CVaR and mean-standard deviation. Our results characterize key optimality properties for the associated continuous relaxation of the proposed general model and provide insights on valuable rank-ordering mechanisms for items with uncertain resource needs under different risk measures. For this broadly applicable case, we present a class of efficient and high-performing asymptotically optimal heuristic methods based on these optimality conditions. An extensive numerical study evaluates the efficiency and quality of the proposed solution methods, identifies optimal item selection strategies, and examines the sensitivity of the solution to varying levels of risk, excess weight penalty values, and knapsack capacity values. Summary of Contribution: This research proposes and analyzes new models for a stochastic resource allocation problem that arises in a variety of operations contexts. One of the primary contributions of the paper lies in providing a succinct, robust, and general model that can address a range of different risk-based objectives and cost assumptions under uncertainty. While the model expression is relatively simple, it embeds a reasonably high degree of underlying complexity, as the analysis shows. In addition, in-depth analysis of the model, both in its general form and under various specific risk measures, uncovers some interesting and powerful insights regarding the problem tradeoffs. Furthermore, this analysis leads to a highly efficient class of heuristic algorithms for solving the problem, which we demonstrate via numerical experimentation to provide close-to-optimal solutions. This computational benefit is a critical element for solving a class of broadly applicable larger problems for which our problem arises as a subproblem that requires repeated solution.

Suggested Citation

  • Yasemin Merzifonluoglu & Joseph Geunes, 2021. "The Risk-Averse Static Stochastic Knapsack Problem," INFORMS Journal on Computing, INFORMS, vol. 33(3), pages 931-948, July.
  • Handle: RePEc:inm:orijoc:v:33:y:2021:i:3:p:931-948
    DOI: 10.1287/ijoc.2020.0972
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/ijoc.2020.0972
    Download Restriction: no

    File URL: https://libkey.io/10.1287/ijoc.2020.0972?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Guanlian Xiao & Willem van Jaarsveld & Ming Dong & Joris van de Klundert, 2018. "Models, algorithms and performance analysis for adaptive operating room scheduling," International Journal of Production Research, Taylor & Francis Journals, vol. 56(4), pages 1389-1413, February.
    2. Anton J. Kleywegt & Jason D. Papastavrou, 2001. "The Dynamic and Stochastic Knapsack Problem with Random Sized Items," Operations Research, INFORMS, vol. 49(1), pages 26-41, February.
    3. Range, Troels Martin & Kozlowski, Dawid & Petersen, Niels Chr., 2019. "Dynamic job assignment: A column generation approach with an application to surgery allocation," European Journal of Operational Research, Elsevier, vol. 272(1), pages 78-93.
    4. Giri, B.C., 2011. "Managing inventory with two suppliers under yield uncertainty and risk aversion," International Journal of Production Economics, Elsevier, vol. 133(1), pages 80-85, September.
    5. Chen, Kai & Ross, Sheldon M., 2014. "An adaptive stochastic knapsack problem," European Journal of Operational Research, Elsevier, vol. 239(3), pages 625-635.
    6. Stefanie Kosuch & Abdel Lisser, 2010. "Upper bounds for the 0-1 stochastic knapsack problem and a B&B algorithm," Annals of Operations Research, Springer, vol. 176(1), pages 77-93, April.
    7. Brian C. Dean & Michel X. Goemans & Jan Vondrák, 2008. "Approximating the Stochastic Knapsack Problem: The Benefit of Adaptivity," Mathematics of Operations Research, INFORMS, vol. 33(4), pages 945-964, November.
    8. Mordechai I. Henig, 1990. "Risk Criteria in a Stochastic Knapsack Problem," Operations Research, INFORMS, vol. 38(5), pages 820-825, October.
    9. João Claro & Jorge Sousa, 2010. "A multiobjective metaheuristic for a mean-risk static stochastic knapsack problem," Computational Optimization and Applications, Springer, vol. 46(3), pages 427-450, July.
    10. Rockafellar, R. Tyrrell & Uryasev, Stanislav, 2002. "Conditional value-at-risk for general loss distributions," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1443-1471, July.
    11. Robert L. Carraway & Robert L. Schmidt & Lawrence R. Weatherford, 1993. "An algorithm for maximizing target achievement in the stochastic knapsack problem with normal returns," Naval Research Logistics (NRL), John Wiley & Sons, vol. 40(2), pages 161-173, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Brian C. Dean & Michel X. Goemans & Jan Vondrák, 2008. "Approximating the Stochastic Knapsack Problem: The Benefit of Adaptivity," Mathematics of Operations Research, INFORMS, vol. 33(4), pages 945-964, November.
    2. Taylan İlhan & Seyed M. R. Iravani & Mark S. Daskin, 2011. "TECHNICAL NOTE---The Adaptive Knapsack Problem with Stochastic Rewards," Operations Research, INFORMS, vol. 59(1), pages 242-248, February.
    3. Stefanie Kosuch & Abdel Lisser, 2010. "Upper bounds for the 0-1 stochastic knapsack problem and a B&B algorithm," Annals of Operations Research, Springer, vol. 176(1), pages 77-93, April.
    4. Jian Li & Amol Deshpande, 2019. "Maximizing Expected Utility for Stochastic Combinatorial Optimization Problems," Mathematics of Operations Research, INFORMS, vol. 44(1), pages 354-375, February.
    5. Asaf Levin & Aleksander Vainer, 2018. "Lower bounds on the adaptivity gaps in variants of the stochastic knapsack problem," Journal of Combinatorial Optimization, Springer, vol. 35(3), pages 794-813, April.
    6. Range, Troels Martin & Kozlowski, Dawid & Petersen, Niels Chr., 2017. "A shortest-path-based approach for the stochastic knapsack problem with non-decreasing expected overfilling costs," Discussion Papers on Economics 9/2017, University of Southern Denmark, Department of Economics.
    7. Marco Cello & Giorgio Gnecco & Mario Marchese & Marcello Sanguineti, 2015. "Narrowing the Search for Optimal Call-Admission Policies Via a Nonlinear Stochastic Knapsack Model," Journal of Optimization Theory and Applications, Springer, vol. 164(3), pages 819-841, March.
    8. Will Ma, 2018. "Improvements and Generalizations of Stochastic Knapsack and Markovian Bandits Approximation Algorithms," Mathematics of Operations Research, INFORMS, vol. 43(3), pages 789-812, August.
    9. Diaz, Juan Esteban & Handl, Julia & Xu, Dong-Ling, 2018. "Integrating meta-heuristics, simulation and exact techniques for production planning of a failure-prone manufacturing system," European Journal of Operational Research, Elsevier, vol. 266(3), pages 976-989.
    10. Tianke Feng & Joseph C. Hartman, 2015. "The dynamic and stochastic knapsack Problem with homogeneous‐sized items and postponement options," Naval Research Logistics (NRL), John Wiley & Sons, vol. 62(4), pages 267-292, June.
    11. Huanan Zhang & Cong Shi & Chao Qin & Cheng Hua, 2016. "Stochastic regret minimization for revenue management problems with nonstationary demands," Naval Research Logistics (NRL), John Wiley & Sons, vol. 63(6), pages 433-448, September.
    12. Shuang Chen & Joseph Geunes, 2013. "Optimal allocation of stock levels and stochastic customer demands to a capacitated resource," Annals of Operations Research, Springer, vol. 203(1), pages 33-54, March.
    13. Kai Chen & Sheldon M. Ross, 2014. "The burglar problem with multiple options," Naval Research Logistics (NRL), John Wiley & Sons, vol. 61(5), pages 359-364, August.
    14. João Claro & Jorge Sousa, 2010. "A multiobjective metaheuristic for a mean-risk static stochastic knapsack problem," Computational Optimization and Applications, Springer, vol. 46(3), pages 427-450, July.
    15. Sean Harris & David Claudio, 2022. "Current Trends in Operating Room Scheduling 2015 to 2020: a Literature Review," SN Operations Research Forum, Springer, vol. 3(1), pages 1-42, March.
    16. Cui, Xueting & Zhu, Shushang & Sun, Xiaoling & Li, Duan, 2013. "Nonlinear portfolio selection using approximate parametric Value-at-Risk," Journal of Banking & Finance, Elsevier, vol. 37(6), pages 2124-2139.
    17. Zhi Chen & Melvyn Sim & Huan Xu, 2019. "Distributionally Robust Optimization with Infinitely Constrained Ambiguity Sets," Operations Research, INFORMS, vol. 67(5), pages 1328-1344, September.
    18. Dominique Guégan & Wayne Tarrant, 2012. "On the necessity of five risk measures," Annals of Finance, Springer, vol. 8(4), pages 533-552, November.
    19. Giovanni Masala & Filippo Petroni, 2023. "Drawdown risk measures for asset portfolios with high frequency data," Annals of Finance, Springer, vol. 19(2), pages 265-289, June.
    20. Ke Zhou & Jiangjun Gao & Duan Li & Xiangyu Cui, 2017. "Dynamic mean–VaR portfolio selection in continuous time," Quantitative Finance, Taylor & Francis Journals, vol. 17(10), pages 1631-1643, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:orijoc:v:33:y:2021:i:3:p:931-948. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.