IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v59y2011i1p173-187.html
   My bibliography  Save this article

Solving Nonlinear Covering Problems Arising in WLAN Design

Author

Listed:
  • Edoardo Amaldi

    (Dipartimento di Elettronica e Informazione, Politecnico di Milano, 20133 Milan, Italy)

  • Sandro Bosio

    (Institute for Operations Research, ETH Zurich, 8092 Zurich, Switzerland)

  • Federico Malucelli

    (Dipartimento di Elettronica e Informazione, Politecnico di Milano, 20133 Milan, Italy)

  • Di Yuan

    (Department of Science and Technology, Linköping University, SE-601 74 Norrköping, Sweden)

Abstract

Wireless local area networks (WLANs) are widely used for cable replacement and wireless Internet access. Because the medium access control (MAC) scheme of WLANs has a strong influence on network performance, it should be accounted for in WLAN design. This paper presents AP location models that optimize a network performance measure specifically for the MAC scheme of WLANs that represents the efficiency in sharing the wireless medium. For these models, we propose a solution framework based on an effective integer-linear programming Dantzig--Wolfe reformulation. This framework is applicable to any nonlinear covering problem where the objective function is a sum of contributions over the groundset elements (users in WLANs). Extensive computational results show that our solution strategy quickly yields optimal or near-optimal solutions for WLAN design instances of realistic size.

Suggested Citation

  • Edoardo Amaldi & Sandro Bosio & Federico Malucelli & Di Yuan, 2011. "Solving Nonlinear Covering Problems Arising in WLAN Design," Operations Research, INFORMS, vol. 59(1), pages 173-187, February.
  • Handle: RePEc:inm:oropre:v:59:y:2011:i:1:p:173-187
    DOI: 10.1287/opre.1100.0897
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/opre.1100.0897
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.1100.0897?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Marco E. Lübbecke & Jacques Desrosiers, 2005. "Selected Topics in Column Generation," Operations Research, INFORMS, vol. 53(6), pages 1007-1023, December.
    2. Geraldo Mateus & Antonio Loureiro & Ricardo Rodrigues, 2001. "Optimal Network Design for Wireless Local Area Network," Annals of Operations Research, Springer, vol. 106(1), pages 331-345, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alper Atamtürk & Andrés Gómez, 2020. "Submodularity in Conic Quadratic Mixed 0–1 Optimization," Operations Research, INFORMS, vol. 68(2), pages 609-630, March.
    2. Juan S. Borrero & Colin Gillen & Oleg A. Prokopyev, 2017. "Fractional 0–1 programming: applications and algorithms," Journal of Global Optimization, Springer, vol. 69(1), pages 255-282, September.
    3. Erfan Mehmanchi & Andrés Gómez & Oleg A. Prokopyev, 2019. "Fractional 0–1 programs: links between mixed-integer linear and conic quadratic formulations," Journal of Global Optimization, Springer, vol. 75(2), pages 273-339, October.
    4. Hu, Xiaoxuan & Zhu, Waiming & Ma, Huawei & An, Bo & Zhi, Yanling & Wu, Yi, 2021. "Orientational variable-length strip covering problem: A branch-and-price-based algorithm," European Journal of Operational Research, Elsevier, vol. 289(1), pages 254-269.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lee, Chungmok & Han, Jinil, 2017. "Benders-and-Price approach for electric vehicle charging station location problem under probabilistic travel range," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 130-152.
    2. Isabel Martins & Filipe Alvelos & Miguel Constantino, 2012. "A branch-and-price approach for harvest scheduling subject to maximum area restrictions," Computational Optimization and Applications, Springer, vol. 51(1), pages 363-385, January.
    3. Christensen, Tue R.L. & Labbé, Martine, 2015. "A branch-cut-and-price algorithm for the piecewise linear transportation problem," European Journal of Operational Research, Elsevier, vol. 245(3), pages 645-655.
    4. Ogbe, Emmanuel & Li, Xiang, 2017. "A new cross decomposition method for stochastic mixed-integer linear programming," European Journal of Operational Research, Elsevier, vol. 256(2), pages 487-499.
    5. François Clautiaux & Cláudio Alves & José Valério de Carvalho & Jürgen Rietz, 2011. "New Stabilization Procedures for the Cutting Stock Problem," INFORMS Journal on Computing, INFORMS, vol. 23(4), pages 530-545, November.
    6. de Lima, Vinícius L. & Alves, Cláudio & Clautiaux, François & Iori, Manuel & Valério de Carvalho, José M., 2022. "Arc flow formulations based on dynamic programming: Theoretical foundations and applications," European Journal of Operational Research, Elsevier, vol. 296(1), pages 3-21.
    7. Omid Shahvari & Rasaratnam Logendran & Madjid Tavana, 2022. "An efficient model-based branch-and-price algorithm for unrelated-parallel machine batching and scheduling problems," Journal of Scheduling, Springer, vol. 25(5), pages 589-621, October.
    8. Melanie Erhard, 2021. "Flexible staffing of physicians with column generation," Flexible Services and Manufacturing Journal, Springer, vol. 33(1), pages 212-252, March.
    9. Ann-Kathrin Rothenbächer & Michael Drexl & Stefan Irnich, 2018. "Branch-and-Price-and-Cut for the Truck-and-Trailer Routing Problem with Time Windows," Transportation Science, INFORMS, vol. 52(5), pages 1174-1190, October.
    10. Miriam Kießling & Sascha Kurz & Jörg Rambau, 2021. "An exact column-generation approach for the lot-type design problem," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(3), pages 741-780, October.
    11. Oliver Faust & Jochen Gönsch & Robert Klein, 2017. "Demand-Oriented Integrated Scheduling for Point-to-Point Airlines," Transportation Science, INFORMS, vol. 51(1), pages 196-213, February.
    12. Ibrahim Muter & Tevfik Aytekin, 2017. "Incorporating Aggregate Diversity in Recommender Systems Using Scalable Optimization Approaches," INFORMS Journal on Computing, INFORMS, vol. 29(3), pages 405-421, August.
    13. Han, Jialin & Zhang, Jiaxiang & Guo, Haoyue & Zhang, Ning, 2024. "Optimizing location-routing and demand allocation in the household waste collection system using a branch-and-price algorithm," European Journal of Operational Research, Elsevier, vol. 316(3), pages 958-975.
    14. André Rossi & Alok Singh & Marc Sevaux, 2021. "Focus distance-aware lifetime maximization of video camera-based wireless sensor networks," Journal of Heuristics, Springer, vol. 27(1), pages 5-30, April.
    15. Melchiori, Anna & Sgalambro, Antonino, 2020. "A branch and price algorithm to solve the Quickest Multicommodity k-splittable Flow Problem," European Journal of Operational Research, Elsevier, vol. 282(3), pages 846-857.
    16. Flötteröd, Gunnar, 2017. "A search acceleration method for optimization problems with transport simulation constraints," Transportation Research Part B: Methodological, Elsevier, vol. 98(C), pages 239-260.
    17. Xu, Yifan & Adler, Nicole & Wandelt, Sebastian & Sun, Xiaoqian, 2024. "Competitive integrated airline schedule design and fleet assignment," European Journal of Operational Research, Elsevier, vol. 314(1), pages 32-50.
    18. Renaud Chicoisne, 2023. "Computational aspects of column generation for nonlinear and conic optimization: classical and linearized schemes," Computational Optimization and Applications, Springer, vol. 84(3), pages 789-831, April.
    19. Timo Gschwind & Stefan Irnich, 2012. "Effective Handling of Dynamic Time Windows and Synchronization with Precedences for Exact Vehicle Routing," Working Papers 1211, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    20. Shen, Yunzhuang & Sun, Yuan & Li, Xiaodong & Eberhard, Andrew & Ernst, Andreas, 2023. "Adaptive solution prediction for combinatorial optimization," European Journal of Operational Research, Elsevier, vol. 309(3), pages 1392-1408.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:59:y:2011:i:1:p:173-187. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.