IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v56y2008i2p383-399.html
   My bibliography  Save this article

Two-Stage Fleet Assignment Model Considering Stochastic Passenger Demands

Author

Listed:
  • Hanif D. Sherali

    (Grado Department of Industrial and Systems Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061)

  • Xiaomei Zhu

    (Grado Department of Industrial and Systems Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061)

Abstract

An airline's fleet typically contains multiple aircraft families, each having a specific cockpit design and crew requirement. Each aircraft family contains multiple aircraft types having different capacities. Given a flight schedule network, the fleet assignment model is concerned with assigning aircraft to flight legs to maximize profits with respect to captured itinerary-based demand. However, because of related yield management and crew-scheduling regulations, in particular, this decision needs to be made well in advance of departures when market demand is still highly uncertain, although subsequently at a later stage, reassignments of aircraft types within a given family can be made when demand forecasts improve, while preserving crew schedules. In this paper, we propose a two-stage stochastic mixed-integer programming approach in which the first stage makes only higher-level family-assignment decisions, while the second stage performs subsequent family-based type-level assignments according to forecasted market demand realizations. By considering demand uncertainty up-front at the initial fleeting stage, we inject additional flexibility in the process that offers more judicious opportunities for later revisions. We conduct a polyhedral analysis of the proposed model and develop suitable solution approaches. Results of some numerical experiments are presented to exhibit the efficacy of using the stochastic model as opposed to the traditional deterministic model that considers only expected demand, and to demonstrate the efficiency of the proposed algorithms as compared with solving the model using its deterministic equivalent.

Suggested Citation

  • Hanif D. Sherali & Xiaomei Zhu, 2008. "Two-Stage Fleet Assignment Model Considering Stochastic Passenger Demands," Operations Research, INFORMS, vol. 56(2), pages 383-399, April.
  • Handle: RePEc:inm:oropre:v:56:y:2008:i:2:p:383-399
    DOI: 10.1287/opre.1070.0476
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/opre.1070.0476
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.1070.0476?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ebru K. Bish & Rawee Suwandechochai & Douglas R. Bish, 2004. "Strategies for managing the flexible capacity in the airline industry," Naval Research Logistics (NRL), John Wiley & Sons, vol. 51(5), pages 654-685, August.
    2. Matthew E. Berge & Craig A. Hopperstad, 1993. "Demand Driven Dispatch: A Method for Dynamic Aircraft Capacity Assignment, Models and Algorithms," Operations Research, INFORMS, vol. 41(1), pages 153-168, February.
    3. Fred Glover & Randy Glover & Joe Lorenzo & Claude McMillan, 1982. "The Passenger-Mix Problem in the Scheduled Airlines," Interfaces, INFORMS, vol. 12(3), pages 73-80, June.
    4. Kalyan T. Talluri, 1996. "Swapping Applications in a Daily Airline Fleet Assignment," Transportation Science, INFORMS, vol. 30(3), pages 237-248, August.
    5. Jeph Abara, 1989. "Applying Integer Linear Programming to the Fleet Assignment Problem," Interfaces, INFORMS, vol. 19(4), pages 20-28, August.
    6. Amos Levin, 1971. "Scheduling and Fleet Routing Models for Transportation Systems," Transportation Science, INFORMS, vol. 5(3), pages 232-255, August.
    7. Barry C. Smith & Ellis L. Johnson, 2006. "Robust Airline Fleet Assignment: Imposing Station Purity Using Station Decomposition," Transportation Science, INFORMS, vol. 40(4), pages 497-516, November.
    8. Cynthia Barnhart & Timothy S. Kniker & Manoj Lohatepanont, 2002. "Itinerary-Based Airline Fleet Assignment," Transportation Science, INFORMS, vol. 36(2), pages 199-217, May.
    9. Hanif D. Sherali & Ebru K. Bish & Xiaomei Zhu, 2005. "Polyhedral Analysis and Algorithms for a Demand-Driven Refleeting Model for Aircraft Assignment," Transportation Science, INFORMS, vol. 39(3), pages 349-366, August.
    10. Sherali, Hanif D. & Bish, Ebru K. & Zhu, Xiaomei, 2006. "Airline fleet assignment concepts, models, and algorithms," European Journal of Operational Research, Elsevier, vol. 172(1), pages 1-30, July.
    11. Cynthia Barnhart & Natashia L. Boland & Lloyd W. Clarke & Ellis L. Johnson & George L. Nemhauser & Rajesh G. Shenoi, 1998. "Flight String Models for Aircraft Fleeting and Routing," Transportation Science, INFORMS, vol. 32(3), pages 208-220, August.
    12. A. M. Geoffrion & G. W. Graves, 1974. "Multicommodity Distribution System Design by Benders Decomposition," Management Science, INFORMS, vol. 20(5), pages 822-844, January.
    13. John M. Mulvey & Robert J. Vanderbei & Stavros A. Zenios, 1995. "Robust Optimization of Large-Scale Systems," Operations Research, INFORMS, vol. 43(2), pages 264-281, April.
    14. Ovidiu Listes & Rommert Dekker, 2005. "A Scenario Aggregation–Based Approach for Determining a Robust Airline Fleet Composition for Dynamic Capacity Allocation," Transportation Science, INFORMS, vol. 39(3), pages 367-382, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Meng, Qiang & Wang, Tingsong & Wang, Shuaian, 2012. "Short-term liner ship fleet planning with container transshipment and uncertain container shipment demand," European Journal of Operational Research, Elsevier, vol. 223(1), pages 96-105.
    2. Dachuan Shih & Seoung Kim & Victoria Chen & Jay Rosenberger & Venkata Pilla, 2014. "Efficient computer experiment-based optimization through variable selection," Annals of Operations Research, Springer, vol. 216(1), pages 287-305, May.
    3. Şafak, Özge & Çavuş, Özlem & Aktürk, M. Seli̇m, 2022. "A two-stage decision dependent stochastic approach for airline flight network expansion," Transportation Research Part B: Methodological, Elsevier, vol. 158(C), pages 78-101.
    4. Hanif Sherali & Ki-Hwan Bae & Mohamed Haouari, 2013. "A benders decomposition approach for an integrated airline schedule design and fleet assignment problem with flight retiming, schedule balance, and demand recapture," Annals of Operations Research, Springer, vol. 210(1), pages 213-244, November.
    5. Hanif D. Sherali & Ki-Hwan Bae & Mohamed Haouari, 2010. "Integrated Airline Schedule Design and Fleet Assignment: Polyhedral Analysis and Benders' Decomposition Approach," INFORMS Journal on Computing, INFORMS, vol. 22(4), pages 500-513, November.
    6. Kenan, Nabil & Jebali, Aida & Diabat, Ali, 2018. "The integrated aircraft routing problem with optional flights and delay considerations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 118(C), pages 355-375.
    7. Şafak, Özge & Çavuş, Özlem & Selim Aktürk, M., 2018. "Multi-stage airline scheduling problem with stochastic passenger demand and non-cruise times," Transportation Research Part B: Methodological, Elsevier, vol. 114(C), pages 39-67.
    8. Keji Wei & Vikrant Vaze, 2020. "Airline Timetable Development and Fleet Assignment Incorporating Passenger Choice," Transportation Science, INFORMS, vol. 54(1), pages 139-163, January.
    9. Vedat Bayram & Hande Yaman, 2018. "Shelter Location and Evacuation Route Assignment Under Uncertainty: A Benders Decomposition Approach," Transportation Science, INFORMS, vol. 52(2), pages 416-436, March.
    10. Sibdari, Soheil & Mohammadian, Iman & Pyke, David F., 2018. "On the impact of jet fuel cost on airlines’ capacity choice: Evidence from the U.S. domestic markets," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 111(C), pages 1-17.
    11. Ming Liu & Yueyu Ding & Lihua Sun & Runchun Zhang & Yue Dong & Zihan Zhao & Yiting Wang & Chaoran Liu, 2023. "Green Airline-Fleet Assignment with Uncertain Passenger Demand and Fuel Price," Sustainability, MDPI, vol. 15(2), pages 1-22, January.
    12. Kenan, Nabil & Diabat, Ali & Jebali, Aida, 2018. "Codeshare agreements in the integrated aircraft routing problem," Transportation Research Part B: Methodological, Elsevier, vol. 117(PA), pages 272-295.
    13. Pilla, Venkata L. & Rosenberger, Jay M. & Chen, Victoria & Engsuwan, Narakorn & Siddappa, Sheela, 2012. "A multivariate adaptive regression splines cutting plane approach for solving a two-stage stochastic programming fleet assignment model," European Journal of Operational Research, Elsevier, vol. 216(1), pages 162-171.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hai Jiang & Cynthia Barnhart, 2009. "Dynamic Airline Scheduling," Transportation Science, INFORMS, vol. 43(3), pages 336-354, August.
    2. Sherali, Hanif D. & Bish, Ebru K. & Zhu, Xiaomei, 2006. "Airline fleet assignment concepts, models, and algorithms," European Journal of Operational Research, Elsevier, vol. 172(1), pages 1-30, July.
    3. Pilla, Venkata L. & Rosenberger, Jay M. & Chen, Victoria & Engsuwan, Narakorn & Siddappa, Sheela, 2012. "A multivariate adaptive regression splines cutting plane approach for solving a two-stage stochastic programming fleet assignment model," European Journal of Operational Research, Elsevier, vol. 216(1), pages 162-171.
    4. Hanif Sherali & Ki-Hwan Bae & Mohamed Haouari, 2013. "A benders decomposition approach for an integrated airline schedule design and fleet assignment problem with flight retiming, schedule balance, and demand recapture," Annals of Operations Research, Springer, vol. 210(1), pages 213-244, November.
    5. Hanif D. Sherali & Ebru K. Bish & Xiaomei Zhu, 2005. "Polyhedral Analysis and Algorithms for a Demand-Driven Refleeting Model for Aircraft Assignment," Transportation Science, INFORMS, vol. 39(3), pages 349-366, August.
    6. Hanif D. Sherali & Ki-Hwan Bae & Mohamed Haouari, 2010. "Integrated Airline Schedule Design and Fleet Assignment: Polyhedral Analysis and Benders' Decomposition Approach," INFORMS Journal on Computing, INFORMS, vol. 22(4), pages 500-513, November.
    7. João P. Pita & Cynthia Barnhart & António P. Antunes, 2013. "Integrated Flight Scheduling and Fleet Assignment Under Airport Congestion," Transportation Science, INFORMS, vol. 47(4), pages 477-492, November.
    8. Khaled, Oumaima & Minoux, Michel & Mousseau, Vincent & Michel, Stéphane & Ceugniet, Xavier, 2018. "A multi-criteria repair/recovery framework for the tail assignment problem in airlines," Journal of Air Transport Management, Elsevier, vol. 68(C), pages 137-151.
    9. Ovidiu Listes & Rommert Dekker, 2005. "A Scenario Aggregation–Based Approach for Determining a Robust Airline Fleet Composition for Dynamic Capacity Allocation," Transportation Science, INFORMS, vol. 39(3), pages 367-382, August.
    10. Okan Örsan Özener & Melda Örmeci Matoğlu & Güneş Erdoğan & Mohamed Haouari & Hasan Sözer, 2017. "Solving a large-scale integrated fleet assignment and crew pairing problem," Annals of Operations Research, Springer, vol. 253(1), pages 477-500, June.
    11. F M Zeghal & M Haouari & H D Sherali & N Aissaoui, 2011. "Flexible aircraft fleeting and routing at TunisAir," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(2), pages 368-380, February.
    12. Haouari, Mohamed & Aissaoui, Najla & Mansour, Farah Zeghal, 2009. "Network flow-based approaches for integrated aircraft fleeting and routing," European Journal of Operational Research, Elsevier, vol. 193(2), pages 591-599, March.
    13. Belanger, Nicolas & Desaulniers, Guy & Soumis, Francois & Desrosiers, Jacques, 2006. "Periodic airline fleet assignment with time windows, spacing constraints, and time dependent revenues," European Journal of Operational Research, Elsevier, vol. 175(3), pages 1754-1766, December.
    14. Cynthia Barnhart & Timothy S. Kniker & Manoj Lohatepanont, 2002. "Itinerary-Based Airline Fleet Assignment," Transportation Science, INFORMS, vol. 36(2), pages 199-217, May.
    15. Kenan, Nabil & Diabat, Ali & Jebali, Aida, 2018. "Codeshare agreements in the integrated aircraft routing problem," Transportation Research Part B: Methodological, Elsevier, vol. 117(PA), pages 272-295.
    16. Cynthia Barnhart & Peter Belobaba & Amedeo R. Odoni, 2003. "Applications of Operations Research in the Air Transport Industry," Transportation Science, INFORMS, vol. 37(4), pages 368-391, November.
    17. Keji Wei & Vikrant Vaze, 2020. "Airline Timetable Development and Fleet Assignment Incorporating Passenger Choice," Transportation Science, INFORMS, vol. 54(1), pages 139-163, January.
    18. Cynthia Barnhart & Amr Farahat & Manoj Lohatepanont, 2009. "Airline Fleet Assignment with Enhanced Revenue Modeling," Operations Research, INFORMS, vol. 57(1), pages 231-244, February.
    19. Saravanan Venkatachalam & Suresh Acharya & Kenji Oba & Yoshinari Nakayama, 2020. "Prescriptive Analytics for Swapping Aircraft Assignments at All Nippon Airways," Interfaces, INFORMS, vol. 50(2), pages 99-111, March.
    20. Ravindra K. Ahuja & Jon Goodstein & Amit Mukherjee & James B. Orlin & Dushyant Sharma, 2007. "A Very Large-Scale Neighborhood Search Algorithm for the Combined Through-Fleet-Assignment Model," INFORMS Journal on Computing, INFORMS, vol. 19(3), pages 416-428, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:56:y:2008:i:2:p:383-399. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.