IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v52y2004i6p909-921.html
   My bibliography  Save this article

On the Stability of Supply Chains

Author

Listed:
  • Carlos F. Daganzo

    (Institute of Transportation Studies and Department of Civil and Environmental Engineering, University of California, Berkeley, California 94720)

Abstract

This paper examines the stability of decentralized, multistage supply chains under arbitrary demand conditions. It looks for intrinsic properties of the inventory replenishment policies that hold for all customer demand processes and for policies with desirable properties.It is found that the overall conditions experienced by suppliers several stages removed from the final customer, e.g., the variances of the orders they receive and the inventories they keep, depend on the policy much more than on the demand process. A policy-specific but demand-independent upper bound for the order variance amplification factor of any decentralized policy is shown to exist, and its formula is presented. The bound is always tight for the suppliers at the end of a long chain so that a policy exhibits the “bullwhip effect” if and only if its bound is greater than 1.A simple necessary condition for bullwhip avoidance is also identified in terms of a policy's “gain.” Gain is the marginal change in average inventory induced by a policy when there is a small but sustained change in the demand rate. It is shown that all policies with positive gain produce the bullwhip effect if they do not use future order commitments. Because manufacturers can reduce costs by operating with positive gain, this explains the prevalence of the bullwhip effect.A family of commitment-based policies that can dynamically maintain any desired inventory level for any demand rate (e.g., achieve positive gain) without the bullwhip effect is also presented. The family includes just-in-time strategies as a special case. Simulation results are used as an illustration.

Suggested Citation

  • Carlos F. Daganzo, 2004. "On the Stability of Supply Chains," Operations Research, INFORMS, vol. 52(6), pages 909-921, December.
  • Handle: RePEc:inm:oropre:v:52:y:2004:i:6:p:909-921
    DOI: 10.1287/opre.1040.0147
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/opre.1040.0147
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.1040.0147?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Alan S. Blinder, 1986. "Can the Production Smoothing Model of Inventory Behavior be Saved?," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 101(3), pages 431-453.
    2. Dejonckheere, J. & Disney, S. M. & Lambrecht, M. R. & Towill, D. R., 2003. "Measuring and avoiding the bullwhip effect: A control theoretic approach," European Journal of Operational Research, Elsevier, vol. 147(3), pages 567-590, June.
    3. Kahn, James A, 1987. "Inventories and the Volatility of Production," American Economic Review, American Economic Association, vol. 77(4), pages 667-679, September.
    4. Ramey, Valerie A, 1991. "Nonconvex Costs and the Behavior of Inventories," Journal of Political Economy, University of Chicago Press, vol. 99(2), pages 306-334, April.
    5. Hau L. Lee & V. Padmanabhan & Seungjin Whang, 1997. "Information Distortion in a Supply Chain: The Bullwhip Effect," Management Science, INFORMS, vol. 43(4), pages 546-558, April.
    6. Guillermo Gallego & Özalp Özer, 2001. "Integrating Replenishment Decisions with Advance Demand Information," Management Science, INFORMS, vol. 47(10), pages 1344-1360, October.
    7. Frank Chen & Zvi Drezner & Jennifer K. Ryan & David Simchi-Levi, 2000. "Quantifying the Bullwhip Effect in a Simple Supply Chain: The Impact of Forecasting, Lead Times, and Information," Management Science, INFORMS, vol. 46(3), pages 436-443, March.
    8. John D. Sterman, 1989. "Modeling Managerial Behavior: Misperceptions of Feedback in a Dynamic Decision Making Experiment," Management Science, INFORMS, vol. 35(3), pages 321-339, March.
    9. Naish, Howard F, 1994. "Production Smoothing in the Linear Quadratic Inventory Model," Economic Journal, Royal Economic Society, vol. 104(425), pages 864-875, July.
    10. Sterman, John D., 1989. "Misperceptions of feedback in dynamic decision making," Organizational Behavior and Human Decision Processes, Elsevier, vol. 43(3), pages 301-335, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Zhaodong & Wang, Xin & Ouyang, Yanfeng, 2015. "Bounded growth of the bullwhip effect under a class of nonlinear ordering policies," European Journal of Operational Research, Elsevier, vol. 247(1), pages 72-82.
    2. Ouyang, Yanfeng & Li, Xiaopeng, 2010. "The bullwhip effect in supply chain networks," European Journal of Operational Research, Elsevier, vol. 201(3), pages 799-810, March.
    3. Lai, Richard, 2005. "Bullwhip in a Spanish Shop," MPRA Paper 4758, University Library of Munich, Germany.
    4. Ma, Yungao & Wang, Nengmin & He, Zhengwen & Lu, Jizhou & Liang, Huigang, 2015. "Analysis of the bullwhip effect in two parallel supply chains with interacting price-sensitive demands," European Journal of Operational Research, Elsevier, vol. 243(3), pages 815-825.
    5. Ivanov, Dmitry, 2010. "An optimal-control based integrated model of supply chain," Working Papers 816, Graduate School of Management, St. Petersburg State University.
    6. Ouyang, Yanfeng, 2007. "The effect of information sharing on supply chain stability and the bullwhip effect," European Journal of Operational Research, Elsevier, vol. 182(3), pages 1107-1121, November.
    7. Yanfeng Ouyang & Carlos Daganzo, 2006. "Characterization of the Bullwhip Effect in Linear, Time-Invariant Supply Chains: Some Formulae and Tests," Management Science, INFORMS, vol. 52(10), pages 1544-1556, October.
    8. H. Norouzi Nav & M. R. Jahed Motlagh & A. Makui, 2017. "Robust controlling of chaotic behavior in supply chain networks," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(6), pages 711-724, June.
    9. Ouyang, Yanfeng & Daganzo, Carlos, 2006. "Counteracting the bullwhip effect with decentralized negotiations and advance demand information," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 363(1), pages 14-23.
    10. Chatfield, Dean C. & Pritchard, Alan M., 2013. "Returns and the bullwhip effect," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 49(1), pages 159-175.
    11. Palsule-Desai, Omkar D. & Tirupati, Devanath & Chandra, Pankaj, 2013. "Stability issues in supply chain networks: Implications for coordination mechanisms," International Journal of Production Economics, Elsevier, vol. 142(1), pages 179-193.
    12. Ouyang, Yanfeng & Daganzo, Carlos, 2008. "Robust tests for the bullwhip effect in supply chains with stochastic dynamics," European Journal of Operational Research, Elsevier, vol. 185(1), pages 340-353, February.
    13. Ivanov, Dmitry & Sokolov, Boris, 2013. "Control and system-theoretic identification of the supply chain dynamics domain for planning, analysis and adaptation of performance under uncertainty," European Journal of Operational Research, Elsevier, vol. 224(2), pages 313-323.
    14. Ouyang, Yanfeng & Daganzo, Carlos, 2005. "Counteracting the Bullwhip Effect with Decentralized Negotiations and Advance Demand Information," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt0489z4qg, Institute of Transportation Studies, UC Berkeley.
    15. Sagawa, Juliana Keiko & Nagano, Marcelo Seido, 2015. "Modeling the dynamics of a multi-product manufacturing system: A real case application," European Journal of Operational Research, Elsevier, vol. 244(2), pages 624-636.
    16. Kim, Ilhyung & Springer, Mark, 2008. "Measuring endogenous supply chain volatility: Beyond the bullwhip effect," European Journal of Operational Research, Elsevier, vol. 189(1), pages 172-193, August.
    17. Ouyang, Yanfeng & Daganzo, Carlos F., 2005. "Some Properties of Decentralized Supply Chains," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt5qt7g4tv, Institute of Transportation Studies, UC Berkeley.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ouyang, Yanfeng & Daganzo, Carlos, 2008. "Robust tests for the bullwhip effect in supply chains with stochastic dynamics," European Journal of Operational Research, Elsevier, vol. 185(1), pages 340-353, February.
    2. Yanfeng Ouyang & Carlos Daganzo, 2006. "Characterization of the Bullwhip Effect in Linear, Time-Invariant Supply Chains: Some Formulae and Tests," Management Science, INFORMS, vol. 52(10), pages 1544-1556, October.
    3. Ouyang, Yanfeng & Li, Xiaopeng, 2010. "The bullwhip effect in supply chain networks," European Journal of Operational Research, Elsevier, vol. 201(3), pages 799-810, March.
    4. Ouyang, Yanfeng, 2007. "The effect of information sharing on supply chain stability and the bullwhip effect," European Journal of Operational Research, Elsevier, vol. 182(3), pages 1107-1121, November.
    5. K. Devika & A. Jafarian & A. Hassanzadeh & R. Khodaverdi, 2016. "Optimizing of bullwhip effect and net stock amplification in three-echelon supply chains using evolutionary multi-objective metaheuristics," Annals of Operations Research, Springer, vol. 242(2), pages 457-487, July.
    6. Gérard P. Cachon & Taylor Randall & Glen M. Schmidt, 2007. "In Search of the Bullwhip Effect," Manufacturing & Service Operations Management, INFORMS, vol. 9(4), pages 457-479, April.
    7. Wang, Xun & Disney, Stephen M., 2016. "The bullwhip effect: Progress, trends and directions," European Journal of Operational Research, Elsevier, vol. 250(3), pages 691-701.
    8. Ouyang, Yanfeng & Daganzo, Carlos, 2006. "Counteracting the bullwhip effect with decentralized negotiations and advance demand information," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 363(1), pages 14-23.
    9. Ma, Yungao & Wang, Nengmin & He, Zhengwen & Lu, Jizhou & Liang, Huigang, 2015. "Analysis of the bullwhip effect in two parallel supply chains with interacting price-sensitive demands," European Journal of Operational Research, Elsevier, vol. 243(3), pages 815-825.
    10. Li Chen & Hau L. Lee, 2012. "Bullwhip Effect Measurement and Its Implications," Operations Research, INFORMS, vol. 60(4), pages 771-784, August.
    11. Luong, Huynh Trung, 2007. "Measure of bullwhip effect in supply chains with autoregressive demand process," European Journal of Operational Research, Elsevier, vol. 180(3), pages 1086-1097, August.
    12. Anantaram Balakrishnan & Joseph Geunes & Michael S. Pangburn, 2004. "Coordinating Supply Chains by Controlling Upstream Variability Propagation," Manufacturing & Service Operations Management, INFORMS, vol. 6(2), pages 163-183, July.
    13. Sucky, Eric, 2009. "The bullwhip effect in supply chains--An overestimated problem?," International Journal of Production Economics, Elsevier, vol. 118(1), pages 311-322, March.
    14. Ouyang, Yanfeng & Daganzo, Carlos F., 2005. "Some Properties of Decentralized Supply Chains," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt5qt7g4tv, Institute of Transportation Studies, UC Berkeley.
    15. Lai, Richard, 2005. "Bullwhip in a Spanish Shop," MPRA Paper 4758, University Library of Munich, Germany.
    16. Chatfield, Dean C. & Pritchard, Alan M., 2013. "Returns and the bullwhip effect," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 49(1), pages 159-175.
    17. Kim, Ilhyung & Springer, Mark, 2008. "Measuring endogenous supply chain volatility: Beyond the bullwhip effect," European Journal of Operational Research, Elsevier, vol. 189(1), pages 172-193, August.
    18. Ton Hien Duc, Truong & Luong, Huynh Trung & Kim, Yeong-Dae, 2010. "Effect of the third-party warehouse on bullwhip effect and inventory cost in supply chains," International Journal of Production Economics, Elsevier, vol. 124(2), pages 395-407, April.
    19. Nepal, Bimal & Murat, Alper & Babu Chinnam, Ratna, 2012. "The bullwhip effect in capacitated supply chains with consideration for product life-cycle aspects," International Journal of Production Economics, Elsevier, vol. 136(2), pages 318-331.
    20. Pastore, Erica & Alfieri, Arianna & Zotteri, Giulio, 2019. "An empirical investigation on the antecedents of the bullwhip effect: Evidence from the spare parts industry," International Journal of Production Economics, Elsevier, vol. 209(C), pages 121-133.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:52:y:2004:i:6:p:909-921. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.