IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v52y2004i4p563-582.html
   My bibliography  Save this article

A Numerical Method for Solving Singular Stochastic Control Problems

Author

Listed:
  • Sunil Kumar

    (Graduate School of Business, Stanford University, Stanford, California 94305)

  • Kumar Muthuraman

    (School of Industrial Engineering, Purdue University, West Lafayette, Indiana 47907)

Abstract

Singular stochastic control has found diverse applications in operations management, economics, and finance. However, in all but the simplest of cases, singular stochastic control problems cannot be solved analytically. In this paper, we propose a method for numerically solving a class of singular stochastic control problems. We combine finite element methods that numerically solve partial differential equations with a policy update procedure based on the principle of smooth pasting to iteratively solve Hamilton-Jacobi-Bellman equations associated with the stochastic control problem. A key feature of our method is that the presence of singular controls simplifies the procedure. We illustrate the method on two examples of singular stochastic control problems, one drawn from economics and the other from queueing systems.

Suggested Citation

  • Sunil Kumar & Kumar Muthuraman, 2004. "A Numerical Method for Solving Singular Stochastic Control Problems," Operations Research, INFORMS, vol. 52(4), pages 563-582, August.
  • Handle: RePEc:inm:oropre:v:52:y:2004:i:4:p:563-582
    DOI: 10.1287/opre.1030.0107
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/opre.1030.0107
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.1030.0107?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. J. Michael Harrison & Michael I. Taksar, 1983. "Instantaneous Control of Brownian Motion," Mathematics of Operations Research, INFORMS, vol. 8(3), pages 439-453, August.
    2. Nathaniel O. Keohane & Benjamin Van Roy & Richard J. Zeckhauser, 2000. "Controlling Stocks and Flows to Promote Quality: The Environment, With Applications to Physical and Human Capital," NBER Working Papers 7727, National Bureau of Economic Research, Inc.
    3. Dixit, Avinash, 1997. "Investment and Employment Dynamics in the Short Run and the Long Run," Oxford Economic Papers, Oxford University Press, vol. 49(1), pages 1-20, January.
    4. René A. Caldentey & Lawrence M. Wein, 2002. "Revenue Management of a Make-to-Stock Queue," Manufacturing & Service Operations Management, INFORMS, vol. 4(1), pages 4-6.
    5. Alan S. Manne, 1960. "Linear Programming and Sequential Decisions," Management Science, INFORMS, vol. 6(3), pages 259-267, April.
    6. M. H. A. Davis & A. R. Norman, 1990. "Portfolio Selection with Transaction Costs," Mathematics of Operations Research, INFORMS, vol. 15(4), pages 676-713, November.
    7. Merton, Robert C, 1969. "Lifetime Portfolio Selection under Uncertainty: The Continuous-Time Case," The Review of Economics and Statistics, MIT Press, vol. 51(3), pages 247-257, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dabadghao, Shaunak S. & Chockalingam, Arun & Soltani, Taimaz & Fransoo, Jan, 2021. "Valuing Switching options with the moving-boundary method," Journal of Economic Dynamics and Control, Elsevier, vol. 127(C).
    2. Muthuraman, Kumar, 2008. "A moving boundary approach to American option pricing," Journal of Economic Dynamics and Control, Elsevier, vol. 32(11), pages 3520-3537, November.
    3. Amy R. Ward & Sunil Kumar, 2008. "Asymptotically Optimal Admission Control of a Queue with Impatient Customers," Mathematics of Operations Research, INFORMS, vol. 33(1), pages 167-202, February.
    4. Balikcioglu, Metin & Fackler, Paul L., 2018. "A Numerical Method for Multidimensional Impulse and Barrier Control Problems," CEnREP Working Papers 277666, North Carolina State University, Department of Agricultural and Resource Economics.
    5. Min Dai & Yue Kuen Kwok & Jianping Zong, 2008. "Guaranteed Minimum Withdrawal Benefit In Variable Annuities," Mathematical Finance, Wiley Blackwell, vol. 18(4), pages 595-611, October.
    6. Ghosh, Arka P. & Weerasinghe, Ananda P., 2010. "Optimal buffer size and dynamic rate control for a queueing system with impatient customers in heavy traffic," Stochastic Processes and their Applications, Elsevier, vol. 120(11), pages 2103-2141, November.
    7. Haolin Feng & Kumar Muthuraman, 2010. "A Computational Method for Stochastic Impulse Control Problems," Mathematics of Operations Research, INFORMS, vol. 35(4), pages 830-850, November.
    8. Dabadghao, Shaunak S. & Chockalingam, Arun & Soltani, Taimaz & Fransoo, Jan C., 2021. "Valuing switching options with the moving-boundary method," Other publications TiSEM 45fe7e78-129f-4d41-ac2f-5, Tilburg University, School of Economics and Management.
    9. Takeshi Nagae & Takashi Akamatsu, 2006. "Dynamic Revenue Management of a Toll Road Project under Transportation Demand Uncertainty," Networks and Spatial Economics, Springer, vol. 6(3), pages 345-357, September.
    10. Pierre, Erwan & Villeneuve, Stéphane & Warin, Xavier, 2016. "Numerical approximation of a cash-constrained firm value with investment opportunities," TSE Working Papers 16-637, Toulouse School of Economics (TSE).
    11. Erwan Pierre & St'ephane Villeneuve & Xavier Warin, 2016. "Numerical approximation of a cash-constrained firm value with investment opportunities," Papers 1603.09049, arXiv.org, revised Oct 2016.
    12. Arun Chockalingam & Kumar Muthuraman, 2011. "American Options Under Stochastic Volatility," Operations Research, INFORMS, vol. 59(4), pages 793-809, August.
    13. René Caldentey & Lawrence M. Wein, 2006. "Revenue Management of a Make-to-Stock Queue," Operations Research, INFORMS, vol. 54(5), pages 859-875, October.
    14. Pierre, Erwan & Villeneuve, Stéphane & Warin, Xavier, 2016. "Numerical approximation of a cash-constrained firm value with investment opportunities," IDEI Working Papers 860, Institut d'Économie Industrielle (IDEI), Toulouse.
    15. Vijay V. Desai & Vivek F. Farias & Ciamac C. Moallemi, 2012. "Approximate Dynamic Programming via a Smoothed Linear Program," Operations Research, INFORMS, vol. 60(3), pages 655-674, June.
    16. H. Dharma Kwon, 2010. "Invest or Exit? Optimal Decisions in the Face of a Declining Profit Stream," Operations Research, INFORMS, vol. 58(3), pages 638-649, June.
    17. Melda Ormeci Matoglu & John Vande Vate, 2011. "Drift Control with Changeover Costs," Operations Research, INFORMS, vol. 59(2), pages 427-439, April.
    18. Jing-Sheng Song & Paul Zipkin, 2013. "Supply Streams," Manufacturing & Service Operations Management, INFORMS, vol. 15(3), pages 444-457, July.
    19. Jodi Dianetti & Giorgio Ferrari & Renyuan Xu, 2024. "Exploratory Optimal Stopping: A Singular Control Formulation," Papers 2408.09335, arXiv.org, revised Oct 2024.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Leland, Hayne E., 1999. "Optimal Portfolio Management with Transactions Costs and Capital Gains Taxes," Research Program in Finance, Working Paper Series qt0fw6k0hm, Research Program in Finance, Institute for Business and Economic Research, UC Berkeley.
    2. Liu, Cong & Zheng, Harry, 2016. "Asymptotic analysis for target asset portfolio allocation with small transaction costs," Insurance: Mathematics and Economics, Elsevier, vol. 66(C), pages 59-68.
    3. Bjork, Tomas, 2009. "Arbitrage Theory in Continuous Time," OUP Catalogue, Oxford University Press, edition 3, number 9780199574742.
    4. Marcos Escobar-Anel & Michel Kschonnek & Rudi Zagst, 2022. "Portfolio optimization: not necessarily concave utility and constraints on wealth and allocation," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 95(1), pages 101-140, February.
    5. Min Dai & Zuo Quan Xu & Xun Yu Zhou, 2009. "Continuous-Time Markowitz's Model with Transaction Costs," Papers 0906.0678, arXiv.org.
    6. Xinfu Chen & Min Dai & Wei Jiang & Cong Qin, 2022. "Asymptotic analysis of long‐term investment with two illiquid and correlated assets," Mathematical Finance, Wiley Blackwell, vol. 32(4), pages 1133-1169, October.
    7. Ali Al-Aradi & Sebastian Jaimungal, 2018. "Outperformance and Tracking: Dynamic Asset Allocation for Active and Passive Portfolio Management," Papers 1803.05819, arXiv.org, revised Jul 2018.
    8. Baojun Bian & Xinfu Chen & Min Dai & Shuaijie Qian, 2021. "Penalty method for portfolio selection with capital gains tax," Mathematical Finance, Wiley Blackwell, vol. 31(3), pages 1013-1055, July.
    9. Kerstin Dächert & Ria Grindel & Elisabeth Leoff & Jonas Mahnkopp & Florian Schirra & Jörg Wenzel, 2022. "Multicriteria asset allocation in practice," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 44(2), pages 349-373, June.
    10. Zuo Quan Xu & Fahuai Yi, 2014. "An Optimal Consumption-Investment Model with Constraint on Consumption," Papers 1404.7698, arXiv.org.
    11. Davi Valladão & Thuener Silva & Marcus Poggi, 2019. "Time-consistent risk-constrained dynamic portfolio optimization with transactional costs and time-dependent returns," Annals of Operations Research, Springer, vol. 282(1), pages 379-405, November.
    12. Jin Hyuk Choi & Tae Ung Gang, 2021. "Optimal investment in illiquid market with search frictions and transaction costs," Papers 2101.09936, arXiv.org, revised Aug 2021.
    13. Irle, Albrecht & Prelle, Claas, 2008. "A renewal theoretic result in portfolio theory under transaction costs with multiple risky assets," Kiel Working Papers 1449, Kiel Institute for the World Economy (IfW Kiel).
    14. Chellathurai, Thamayanthi & Draviam, Thangaraj, 2007. "Dynamic portfolio selection with fixed and/or proportional transaction costs using non-singular stochastic optimal control theory," Journal of Economic Dynamics and Control, Elsevier, vol. 31(7), pages 2168-2195, July.
    15. Albert Altarovici & Max Reppen & H. Mete Soner, 2016. "Optimal Consumption and Investment with Fixed and Proportional Transaction Costs," Papers 1610.03958, arXiv.org.
    16. Ali Al-Aradi & Sebastian Jaimungal, 2018. "Outperformance and Tracking: Dynamic Asset Allocation for Active and Passive Portfolio Management," Applied Mathematical Finance, Taylor & Francis Journals, vol. 25(3), pages 268-294, May.
    17. Ren Liu & Johannes Muhle-Karbe & Marko H. Weber, 2014. "Rebalancing with Linear and Quadratic Costs," Papers 1402.5306, arXiv.org, revised Sep 2017.
    18. Jouini, Elyes, 2001. "Arbitrage and control problems in finance: A presentation," Journal of Mathematical Economics, Elsevier, vol. 35(2), pages 167-183, April.
    19. Chonghu Guan & Zuo Quan Xu & Fahuai Yi, 2021. "A consumption-investment model with state-dependent lower bound constraint on consumption," Papers 2109.06378, arXiv.org, revised Dec 2021.
    20. Martin Herdegen & David Hobson & Joseph Jerome, 2021. "An elementary approach to the Merton problem," Mathematical Finance, Wiley Blackwell, vol. 31(4), pages 1218-1239, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:52:y:2004:i:4:p:563-582. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.