IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v21y1973i1p188-209.html
   My bibliography  Save this article

Directional Derivatives for Extremal-Value Functions with Applications to the Completely Convex Case

Author

Listed:
  • William Hogan

    (United States Air Force Academy, Colorado)

Abstract

Several techniques in mathematical programming involve the constrained optimization of an extremal-value function. Such functions are defined as the extremal value of a related parameterized optimization problem. This paper reviews and extends the characterization of directional derivatives for three major types of extremal-value functions. The characterization for the completely convex case is then used to construct a robust and convergent feasible direction algorithm. Such an algorithm has applications to the optimization of large-scale nonlinear decomposable systems.

Suggested Citation

  • William Hogan, 1973. "Directional Derivatives for Extremal-Value Functions with Applications to the Completely Convex Case," Operations Research, INFORMS, vol. 21(1), pages 188-209, February.
  • Handle: RePEc:inm:oropre:v:21:y:1973:i:1:p:188-209
    DOI: 10.1287/opre.21.1.188
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/opre.21.1.188
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.21.1.188?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Giorgio Giorgi, 2021. "Some Classical Directional Derivatives and Their Use in Optimization," DEM Working Papers Series 204, University of Pavia, Department of Economics and Management.
    2. O. Stein, 2004. "On Constraint Qualifications in Nonsmooth Optimization," Journal of Optimization Theory and Applications, Springer, vol. 121(3), pages 647-671, June.
    3. Giancarlo Bigi & Mauro Passacantando, 2016. "Gap functions for quasi-equilibria," Journal of Global Optimization, Springer, vol. 66(4), pages 791-810, December.
    4. Oyama, Daisuke & Takenawa, Tomoyuki, 2018. "On the (non-)differentiability of the optimal value function when the optimal solution is unique," Journal of Mathematical Economics, Elsevier, vol. 76(C), pages 21-32.
    5. Rinaldi, Francesca, 2009. "Endogenous incompleteness of financial markets: The role of ambiguity and ambiguity aversion," Journal of Mathematical Economics, Elsevier, vol. 45(12), pages 880-901, December.
    6. George E. Monahan, 1996. "Finding saddle points on polyhedra: Solving certain continuous minimax problems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 43(6), pages 821-837, September.
    7. O. Stein & A. Winterfeld, 2010. "Feasible Method for Generalized Semi-Infinite Programming," Journal of Optimization Theory and Applications, Springer, vol. 146(2), pages 419-443, August.
    8. Giancarlo Bigi & Mauro Passacantando, 2012. "Gap functions and penalization for solving equilibrium problems with nonlinear constraints," Computational Optimization and Applications, Springer, vol. 53(2), pages 323-346, October.
    9. Giancarlo Bigi & Mauro Passacantando, 2015. "Descent and Penalization Techniques for Equilibrium Problems with Nonlinear Constraints," Journal of Optimization Theory and Applications, Springer, vol. 164(3), pages 804-818, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:21:y:1973:i:1:p:188-209. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.