IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v12y1964i6p882-895.html
   My bibliography  Save this article

Queues for a Vehicle-Actuated Traffic Light

Author

Listed:
  • J. N. Darroch

    (Mathematics Department, University of Adelaide, South Australia)

  • G. F. Newell

    (Mathematics Department, University of Adelaide, South Australia)

  • R. W. J. Morris

    (Traffic Engineering Branch, South Australia Highways and Local Government Department)

Abstract

A vehicle-actuated traffic light controls two intersecting traffic streams keeping the light green for lane i , i = 1 or 2 until any existing queue has been discharged and a headway of duration at least β ı , is detected in the subsequent arrivals. The object of this paper is to investigate how one should choose the β i so as to minimize the average delay per vehicle at the intersection. A model is considered in which the arrival headways are exponentially distributed random variables, departure headways have any specified distribution, and there is a random lost time for each switch of the traffic light. Formulas are derived for the moments of the cycle times, the average wait per vehicle, and the optimal β i .

Suggested Citation

  • J. N. Darroch & G. F. Newell & R. W. J. Morris, 1964. "Queues for a Vehicle-Actuated Traffic Light," Operations Research, INFORMS, vol. 12(6), pages 882-895, December.
  • Handle: RePEc:inm:oropre:v:12:y:1964:i:6:p:882-895
    DOI: 10.1287/opre.12.6.882
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/opre.12.6.882
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.12.6.882?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gao, Yuhong & Qu, Zhaowei & Song, Xianmin & Yun, Zhenyu & Xia, Yingji, 2021. "A novel relationship model between signal timing, queue length and travel speed," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 583(C).
    2. Baykal-Gürsoy, M. & Xiao, W. & Ozbay, K., 2009. "Modeling traffic flow interrupted by incidents," European Journal of Operational Research, Elsevier, vol. 195(1), pages 127-138, May.
    3. Recker, Will, 2008. "Development of an Adaptive Corridor Traffic Control Model," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt1sq7049f, Institute of Transportation Studies, UC Berkeley.
    4. Recker, Will & Zhenhg, Xing & Chu, Lianyu, 2010. "Development of an Adaptive Corridor Traffic Control Model," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt3tx5b17h, Institute of Transportation Studies, UC Berkeley.
    5. Varga, Balázs & Tettamanti, Tamás & Kulcsár, Balázs & Qu, Xiaobo, 2020. "Public transport trajectory planning with probabilistic guarantees," Transportation Research Part B: Methodological, Elsevier, vol. 139(C), pages 81-101.
    6. Pedro Cesar Lopes Gerum & Andrew Reed Benton & Melike Baykal-Gürsoy, 2019. "Traffic density on corridors subject to incidents: models for long-term congestion management," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 8(5), pages 795-831, December.
    7. Boon, Marko & Janssen, Guido & van Leeuwaarden, Johan & Timmerman, Rik, 2023. "Optimal capacity allocation for heavy-traffic fixed-cycle traffic-light queues and intersections," Transportation Research Part B: Methodological, Elsevier, vol. 167(C), pages 79-98.
    8. A. Oblakova & A. Al Hanbali & R. J. Boucherie & J. C. W. Ommeren & W. H. M. Zijm, 2019. "An exact root-free method for the expected queue length for a class of discrete-time queueing systems," Queueing Systems: Theory and Applications, Springer, vol. 92(3), pages 257-292, August.
    9. Tae Son, Young, 1999. "Queueing delay models for two-lane highway work zones," Transportation Research Part B: Methodological, Elsevier, vol. 33(7), pages 459-471, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:12:y:1964:i:6:p:882-895. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.