IDEAS home Printed from https://ideas.repec.org/a/inm/ormsom/v18y2016i1p89-103.html
   My bibliography  Save this article

Improving Store Liquidation

Author

Listed:
  • Nathan C. Craig

    (The Ohio State University, Columbus, Ohio 43210)

  • Ananth Raman

    (Harvard Business School, Boston, Massachusetts 02163)

Abstract

Store liquidation is the time-constrained divestment of retail outlets through an in-store sale of inventory. The retail industry depends extensively on store liquidation, both to allow managers of going concerns to divest stores in efforts to enhance performance and as a means for investors to recover capital from failed ventures. Retailers sell billions of dollars of inventory annually during store liquidations. This paper introduces the store liquidation problem to the literature and presents a technique for optimizing key store liquidation decisions, including markdowns, inventory transfers, and the timing of store closings. We propose a heuristic for solving the store liquidation problem and evaluate the performance of this method. Through applications, we show that our approach could improve net recovery on cost (i.e., the profit obtained during a liquidation stated as a percentage of the cost value of liquidated inventory) by two to five percentage points in the cases we examined. Further, we discuss ways in which current practice in store liquidation differs from the decisions identified by our method, and we trace the consequences of these differences.

Suggested Citation

  • Nathan C. Craig & Ananth Raman, 2016. "Improving Store Liquidation," Manufacturing & Service Operations Management, INFORMS, vol. 18(1), pages 89-103, February.
  • Handle: RePEc:inm:ormsom:v:18:y:2016:i:1:p:89-103
    DOI: 10.1287/msom.2015.0531
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/msom.2015.0531
    Download Restriction: no

    File URL: https://libkey.io/10.1287/msom.2015.0531?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Guillermo Gallego & Garrett van Ryzin, 1994. "Optimal Dynamic Pricing of Inventories with Stochastic Demand over Finite Horizons," Management Science, INFORMS, vol. 40(8), pages 999-1020, August.
    2. Gabriel Bitran & René Caldentey & Susana Mondschein, 1998. "Coordinating Clearance Markdown Sales of Seasonal Products in Retail Chains," Operations Research, INFORMS, vol. 46(5), pages 609-624, October.
    3. Marshall Fisher & Kumar Rajaram, 2000. "Accurate Retail Testing of Fashion Merchandise: Methodology and Application," Marketing Science, INFORMS, vol. 19(3), pages 266-278, June.
    4. Lazear, Edward P, 1986. "Retail Pricing and Clearance Sales," American Economic Review, American Economic Association, vol. 76(1), pages 14-32, March.
    5. Felipe Caro & Jérémie Gallien, 2012. "Clearance Pricing Optimization for a Fast-Fashion Retailer," Operations Research, INFORMS, vol. 60(6), pages 1404-1422, December.
    6. Anantaram Balakrishnan & Michael S. Pangburn & Euthemia Stavrulaki, 2008. "Integrating the Promotional and Service Roles of Retail Inventories," Manufacturing & Service Operations Management, INFORMS, vol. 10(2), pages 218-235, July.
    7. Wedad Elmaghraby & P{i}nar Keskinocak, 2003. "Dynamic Pricing in the Presence of Inventory Considerations: Research Overview, Current Practices, and Future Directions," Management Science, INFORMS, vol. 49(10), pages 1287-1309, October.
    8. Gérard P. Cachon & Robert Swinney, 2009. "Purchasing, Pricing, and Quick Response in the Presence of Strategic Consumers," Management Science, INFORMS, vol. 55(3), pages 497-511, March.
    9. Murali K. Mantrala & Surya Rao, 2001. "A Decision-Support System that Helps Retailers Decide Order Quantities and Markdowns for Fashion Goods," Interfaces, INFORMS, vol. 31(3_supplem), pages 146-165, June.
    10. Xuanming Su, 2007. "Intertemporal Pricing with Strategic Customer Behavior," Management Science, INFORMS, vol. 53(5), pages 726-741, May.
    11. Marshall Fisher & Ananth Raman, 1996. "Reducing the Cost of Demand Uncertainty Through Accurate Response to Early Sales," Operations Research, INFORMS, vol. 44(1), pages 87-99, February.
    12. Gabriel Bitran & René Caldentey, 2003. "An Overview of Pricing Models for Revenue Management," Manufacturing & Service Operations Management, INFORMS, vol. 5(3), pages 203-229, August.
    13. Felipe Caro & Jérémie Gallien, 2007. "Dynamic Assortment with Demand Learning for Seasonal Consumer Goods," Management Science, INFORMS, vol. 53(2), pages 276-292, February.
    14. J. Neil Bearden & Ryan O. Murphy & Amnon Rapoport, 2008. "Decision Biases in Revenue Management: Some Behavioral Evidence," Manufacturing & Service Operations Management, INFORMS, vol. 10(4), pages 625-636, June.
    15. Felipe Caro & Jérémie Gallien, 2010. "Inventory Management of a Fast-Fashion Retail Network," Operations Research, INFORMS, vol. 58(2), pages 257-273, April.
    16. Stephen A. Smith & Dale D. Achabal, 1998. "Clearance Pricing and Inventory Policies for Retail Chains," Management Science, INFORMS, vol. 44(3), pages 285-300, March.
    17. Hau L. Lee & Christopher S. Tang, 1997. "Modelling the Costs and Benefits of Delayed Product Differentiation," Management Science, INFORMS, vol. 43(1), pages 40-53, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Carrasco, Jose A. & Harrison, Rodrigo, 2023. "Costly multi-unit search," European Economic Review, Elsevier, vol. 154(C).
    2. Jérémie Gallien & Alan Scheller-Wolf, 2016. "Introduction to the Special Issue on Practice-Focused Research," Manufacturing & Service Operations Management, INFORMS, vol. 18(1), pages 1-4, February.
    3. Omar Besbes & Dan A. Iancu & Nikolaos Trichakis, 2018. "Dynamic Pricing Under Debt: Spiraling Distortions and Efficiency Losses," Management Science, INFORMS, vol. 64(10), pages 4572-4589, October.
    4. M. Serkan Akturk & Michael Ketzenberg, 2022. "Impact of Competitor Store Closures on a Major Retailer," Production and Operations Management, Production and Operations Management Society, vol. 31(2), pages 715-730, February.
    5. Dan A. Iancu & Nikolaos Trichakis & Gerry Tsoukalas, 2017. "Is Operating Flexibility Harmful Under Debt?," Management Science, INFORMS, vol. 63(6), pages 1730-1761, June.
    6. Stephen A. Smith & Narendra Agrawal, 2017. "Optimal Markdown Pricing and Inventory Allocation for Retail Chains with Inventory Dependent Demand," Manufacturing & Service Operations Management, INFORMS, vol. 19(2), pages 290-304, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vincent C. Li & Yat-wah Wan & Chi-Leung Chu & Yi-Cheng Lin, 2020. "A Dynamic Programming-Based Heuristic for Markdown Pricing and Inventory Allocation of a Seasonal Product in a Retail Chain," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 37(01), pages 1-30, January.
    2. Bernardo Bertoldi & Chiara Giachino & Alberto Pastore, 2016. "Strategic pricing management in the omnichannel era," MERCATI & COMPETITIVIT?, FrancoAngeli Editore, vol. 2016(4), pages 131-152.
    3. Felipe Caro & Jérémie Gallien, 2012. "Clearance Pricing Optimization for a Fast-Fashion Retailer," Operations Research, INFORMS, vol. 60(6), pages 1404-1422, December.
    4. Namin, Aidin & Ratchford, Brian T. & Soysal, Gonca P., 2017. "An empirical analysis of demand variations and markdown policies for fashion retailers," Journal of Retailing and Consumer Services, Elsevier, vol. 38(C), pages 126-136.
    5. Namin, Aidin & Soysal, Gonca P. & Ratchford, Brian T., 2022. "Alleviating demand uncertainty for seasonal goods: An analysis of attribute-based markdown policy for fashion retailers," Journal of Business Research, Elsevier, vol. 145(C), pages 671-681.
    6. Christopher S. Tang, 2017. "OM Forum—Three Simple Approaches for Young Scholars to Identify Relevant and Novel Research Topics in Operations Management," Manufacturing & Service Operations Management, INFORMS, vol. 19(3), pages 338-346, July.
    7. Stephen A. Smith & Narendra Agrawal, 2017. "Optimal Markdown Pricing and Inventory Allocation for Retail Chains with Inventory Dependent Demand," Manufacturing & Service Operations Management, INFORMS, vol. 19(2), pages 290-304, May.
    8. Dasu, Sriram & Tong, Chunyang, 2010. "Dynamic pricing when consumers are strategic: Analysis of posted and contingent pricing schemes," European Journal of Operational Research, Elsevier, vol. 204(3), pages 662-671, August.
    9. Mochen Yang & Gediminas Adomavicius & Alok Gupta, 2019. "Efficient Computational Strategies for Dynamic Inventory Liquidation," Information Systems Research, INFORMS, vol. 30(2), pages 595-615, June.
    10. Gabriel Bitran & René Caldentey, 2003. "An Overview of Pricing Models for Revenue Management," Manufacturing & Service Operations Management, INFORMS, vol. 5(3), pages 203-229, August.
    11. Vincent Mak & Amnon Rapoport & Eyran J. Gisches & Jiaojie Han, 2014. "Purchasing Scarce Products Under Dynamic Pricing: An Experimental Investigation," Manufacturing & Service Operations Management, INFORMS, vol. 16(3), pages 425-438, July.
    12. Vincent Mak & Amnon Rapoport & Eyran J. Gisches, 2018. "Dynamic Pricing Decisions and Seller-Buyer Interactions under Capacity Constraints," Games, MDPI, vol. 9(1), pages 1-23, February.
    13. Adam J. Mersereau & Dan Zhang, 2012. "Markdown Pricing with Unknown Fraction of Strategic Customers," Manufacturing & Service Operations Management, INFORMS, vol. 14(3), pages 355-370, July.
    14. Gonca P. Soysal & Lakshman Krishnamurthi, 2012. "Demand Dynamics in the Seasonal Goods Industry: An Empirical Analysis," Marketing Science, INFORMS, vol. 31(2), pages 293-316, March.
    15. Pol Boada-Collado & Victor Martínez-de-Albéniz, 2020. "Estimating and Optimizing the Impact of Inventory on Consumer Choices in a Fashion Retail Setting," Manufacturing & Service Operations Management, INFORMS, vol. 22(3), pages 582-597, May.
    16. Pavithra Harsha & Shivaram Subramanian & Joline Uichanco, 2019. "Dynamic Pricing of Omnichannel Inventories," Service Science, INFORMS, vol. 21(1), pages 47-65, January.
    17. Mohammed Al-Hitmi & Salman Ahmad & Atif Iqbal & Sanjeevikumar Padmanaban & Imtiaz Ashraf, 2018. "Selective Harmonic Elimination in a Wide Modulation Range Using Modified Newton–Raphson and Pattern Generation Methods for a Multilevel Inverter," Energies, MDPI, vol. 11(2), pages 1-16, February.
    18. René Caldentey & Ying Liu & Ilan Lobel, 2017. "Intertemporal Pricing Under Minimax Regret," Operations Research, INFORMS, vol. 65(1), pages 104-129, February.
    19. Ibrahim, Michael Nawar & Atiya, Amir F., 2016. "Analytical solutions to the dynamic pricing problem for time-normalized revenue," European Journal of Operational Research, Elsevier, vol. 254(2), pages 632-643.
    20. Yossi Aviv & Mike Mingcheng Wei & Fuqiang Zhang, 2019. "Responsive Pricing of Fashion Products: The Effects of Demand Learning and Strategic Consumer Behavior," Management Science, INFORMS, vol. 65(7), pages 2982-3000, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormsom:v:18:y:2016:i:1:p:89-103. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.