IDEAS home Printed from https://ideas.repec.org/a/inm/ormnsc/v69y2023i8p4413-4434.html
   My bibliography  Save this article

High-Frequency Trading Strategies

Author

Listed:
  • Michael Goldstein

    (Babson College, Babson Park, Massachusetts 02457)

  • Amy Kwan

    (University of New South Wales, Sydney New South Wales 2052, Australia)

  • Richard Philip

    (University of Sydney, Camperdown New South Wales 2006, Australia)

Abstract

We examine the effect of high-frequency trading on market quality from the perspective of a limit order trader. By competing with slower limit order traders, high-frequency traders impose a welfare externality by selectively crowding out the most profitable limit orders. The order book imbalance immediately before each order submission, cancellation, and trade suggests that high-frequency traders strategically use limit order book information to supply liquidity on the thick side of the order book and demand liquidity from the thin side. This strategic behavior is more pronounced during volatile periods and when trading speeds increase.

Suggested Citation

  • Michael Goldstein & Amy Kwan & Richard Philip, 2023. "High-Frequency Trading Strategies," Management Science, INFORMS, vol. 69(8), pages 4413-4434, August.
  • Handle: RePEc:inm:ormnsc:v:69:y:2023:i:8:p:4413-4434
    DOI: 10.1287/mnsc.2022.4539
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/mnsc.2022.4539
    Download Restriction: no

    File URL: https://libkey.io/10.1287/mnsc.2022.4539?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Andriy Shkilko & Konstantin Sokolov, 2020. "Every Cloud Has a Silver Lining: Fast Trading, Microwave Connectivity, and Trading Costs," Journal of Finance, American Finance Association, vol. 75(6), pages 2899-2927, December.
    2. Aitken, Michael & Chen, Haoming & Foley, Sean, 2017. "The impact of fragmentation, exchange fees and liquidity provision on market quality," Journal of Empirical Finance, Elsevier, vol. 41(C), pages 140-160.
    3. Biais, Bruno & Foucault, Thierry & Moinas, Sophie, 2015. "Equilibrium fast trading," Journal of Financial Economics, Elsevier, vol. 116(2), pages 292-313.
    4. Chordia, Tarun & Roll, Richard & Subrahmanyam, Avanidhar, 2002. "Order imbalance, liquidity, and market returns," Journal of Financial Economics, Elsevier, vol. 65(1), pages 111-130, July.
    5. Andrei Kirilenko & Albert S. Kyle & Mehrdad Samadi & Tugkan Tuzun, 2017. "The Flash Crash: High-Frequency Trading in an Electronic Market," Journal of Finance, American Finance Association, vol. 72(3), pages 967-998, June.
    6. Lee, Charles M C & Ready, Mark J, 1991. "Inferring Trade Direction from Intraday Data," Journal of Finance, American Finance Association, vol. 46(2), pages 733-746, June.
    7. Ekkehart Boehmer & Dan Li & Gideon Saar, 2018. "The Competitive Landscape of High-Frequency Trading Firms," The Review of Financial Studies, Society for Financial Studies, vol. 31(6), pages 2227-2276.
    8. Rama Cont & Arseniy Kukanov & Sasha Stoikov, 2013. "The Price Impact of Order Book Events," Journal of Financial Econometrics, Oxford University Press, vol. 12(1), pages 47-88, December.
    9. Charles Cao & Oliver Hansch & Xiaoxin Wang, 2009. "The information content of an open limit‐order book," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 29(1), pages 16-41, January.
    10. Upson, James & McInish, Thomas & IV, B. Hardy Johnson, 2021. "Order based versus level book trade reporting: An empirical analysis," Journal of Banking & Finance, Elsevier, vol. 125(C).
    11. Ranaldo, Angelo, 2004. "Order aggressiveness in limit order book markets," Journal of Financial Markets, Elsevier, vol. 7(1), pages 53-74, January.
    12. Anand, Amber & Venkataraman, Kumar, 2016. "Market conditions, fragility, and the economics of market making," Journal of Financial Economics, Elsevier, vol. 121(2), pages 327-349.
    13. Brogaard, Jonathan & Carrion, Allen & Moyaert, Thibaut & Riordan, Ryan & Shkilko, Andriy & Sokolov, Konstantin, 2018. "High frequency trading and extreme price movements," Journal of Financial Economics, Elsevier, vol. 128(2), pages 253-265.
    14. Katrina Ellis & Roni Michaely & Maureen O'Hara, 2000. "When the Underwriter Is the Market Maker: An Examination of Trading in the IPO Aftermarket," Journal of Finance, American Finance Association, vol. 55(3), pages 1039-1074, June.
    15. Chakrabarty, Bidisha & Moulton, Pamela C. & Wang, Xu (Frank), 2022. "Attention: How high-frequency trading improves price efficiency following earnings announcements," Journal of Financial Markets, Elsevier, vol. 57(C).
    16. Parlour, Christine A, 1998. "Price Dynamics in Limit Order Markets," The Review of Financial Studies, Society for Financial Studies, vol. 11(4), pages 789-816.
    17. Jonathan Brogaard & Terrence Hendershott & Ryan Riordan, 2019. "Price Discovery without Trading: Evidence from Limit Orders," Journal of Finance, American Finance Association, vol. 74(4), pages 1621-1658, August.
    18. Vincent Van Kervel & Albert J. Menkveld, 2019. "High‐Frequency Trading around Large Institutional Orders," Journal of Finance, American Finance Association, vol. 74(3), pages 1091-1137, June.
    19. Menkveld, Albert J., 2013. "High frequency trading and the new market makers," Journal of Financial Markets, Elsevier, vol. 16(4), pages 712-740.
    20. Chordia, Tarun & Subrahmanyam, Avanidhar, 2004. "Order imbalance and individual stock returns: Theory and evidence," Journal of Financial Economics, Elsevier, vol. 72(3), pages 485-518, June.
    21. Goettler, Ronald L. & Parlour, Christine A. & Rajan, Uday, 2009. "Informed traders and limit order markets," Journal of Financial Economics, Elsevier, vol. 93(1), pages 67-87, July.
    22. Markus Baldauf & Joshua Mollner, 2020. "High‐Frequency Trading and Market Performance," Journal of Finance, American Finance Association, vol. 75(3), pages 1495-1526, June.
    23. Malceniece, Laura & Malcenieks, Kārlis & Putniņš, Tālis J., 2019. "High frequency trading and comovement in financial markets," Journal of Financial Economics, Elsevier, vol. 134(2), pages 381-399.
    24. Jonathan Brogaard & Terrence Hendershott & Ryan Riordan, 2014. "High-Frequency Trading and Price Discovery," The Review of Financial Studies, Society for Financial Studies, vol. 27(8), pages 2267-2306.
    25. Vincent van Kervel, 2015. "Competition for Order Flow with Fast and Slow Traders," The Review of Financial Studies, Society for Financial Studies, vol. 28(7), pages 2094-2127.
    26. Terrence Hendershott & Charles M. Jones & Albert J. Menkveld, 2011. "Does Algorithmic Trading Improve Liquidity?," Journal of Finance, American Finance Association, vol. 66(1), pages 1-33, February.
    27. Chen Yao & Mao Ye, 2018. "Why Trading Speed Matters: A Tale of Queue Rationing under Price Controls," The Review of Financial Studies, Society for Financial Studies, vol. 31(6), pages 2157-2183.
    28. Jonathan Brogaard & Björn Hagströmer & Lars Nordén & Ryan Riordan, 2015. "Trading Fast and Slow: Colocation and Liquidity," The Review of Financial Studies, Society for Financial Studies, vol. 28(12), pages 3407-3443.
    29. Hoffmann, Peter, 2014. "A dynamic limit order market with fast and slow traders," Journal of Financial Economics, Elsevier, vol. 113(1), pages 156-169.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Long, Yunshen & Yan, Jingzhou & Wu, Liang & Long, Xingchen, 2024. "Market price determination: Interpreting quote order imbalance under zero-profit equilibrium," Economic Modelling, Elsevier, vol. 134(C).
    2. Alessio Brini & Giacomo Toscano, 2024. "SpotV2Net: Multivariate Intraday Spot Volatility Forecasting via Vol-of-Vol-Informed Graph Attention Networks," Papers 2401.06249, arXiv.org, revised Aug 2024.
    3. Yensen Ni, 2024. "Navigating Energy and Financial Markets: A Review of Technical Analysis Used and Further Investigation from Various Perspectives," Energies, MDPI, vol. 17(12), pages 1-22, June.
    4. Kou, Mingting & Yang, Yuanqi & Chen, Kaihua, 2024. "Financial technology research: Past and future trajectories," International Review of Economics & Finance, Elsevier, vol. 93(PA), pages 162-181.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dodd, Olga & Frijns, Bart & Indriawan, Ivan & Pascual, Roberto, 2023. "US cross-listing and domestic high-frequency trading: Evidence from Canadian stocks," Journal of Empirical Finance, Elsevier, vol. 72(C), pages 301-320.
    2. Breedon, Francis & Chen, Louisa & Ranaldo, Angelo & Vause, Nicholas, 2023. "Judgment day: Algorithmic trading around the Swiss franc cap removal," Journal of International Economics, Elsevier, vol. 140(C).
    3. Nicholas Hirschey, 2021. "Do High-Frequency Traders Anticipate Buying and Selling Pressure?," Management Science, INFORMS, vol. 67(6), pages 3321-3345, June.
    4. Cox, Justin & Woods, Donovan, 2023. "COVID-19 and market structure dynamics," Journal of Banking & Finance, Elsevier, vol. 147(C).
    5. Rzayev, Khaladdin & Ibikunle, Gbenga & Steffen, Tom, 2023. "The market quality implications of speed in cross-platform trading: evidence from Frankfurt-London microwave," LSE Research Online Documents on Economics 119989, London School of Economics and Political Science, LSE Library.
    6. Bongaerts, Dion & Achter, Mark Van, 2021. "Competition among liquidity providers with access to high-frequency trading technology," Journal of Financial Economics, Elsevier, vol. 140(1), pages 220-249.
    7. Baldauf, Markus & Mollner, Joshua, 2022. "Fast traders make a quick buck: The role of speed in liquidity provision," Journal of Financial Markets, Elsevier, vol. 58(C).
    8. Sánchez Serrano Antonio, 2020. "High-Frequency Trading and Systemic Risk: A Structured Review of Findings and Policies," Review of Economics, De Gruyter, vol. 71(3), pages 169-195, December.
    9. Rzayev, Khaladdin & Ibikunle, Gbenga & Steffen, Tom, 2023. "The market quality implications of speed in cross-platform trading: Evidence from Frankfurt-London microwave," Journal of Financial Markets, Elsevier, vol. 66(C).
    10. Ryan Garvey & Tao Huang & Fei Wu, 2021. "Is faster or slower trading better? An examination of order type execution speed and costs," European Financial Management, European Financial Management Association, vol. 27(2), pages 326-363, March.
    11. Brice Corgnet & Mark DeSantis & Christoph Siemroth, 2023. "Algorithmic Trading, Price Efficiency and Welfare: An Experimental Approach," Working Papers 2313, Groupe d'Analyse et de Théorie Economique Lyon St-Étienne (GATE Lyon St-Étienne), Université de Lyon.
    12. Zhou, Hao & Kalev, Petko S. & Frino, Alex, 2020. "Algorithmic trading in turbulent markets," Pacific-Basin Finance Journal, Elsevier, vol. 62(C).
    13. Benjamin Clapham & Martin Haferkorn & Kai Zimmermann, 2023. "The Impact of High-Frequency Trading on Modern Securities Markets," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 65(1), pages 7-24, February.
    14. Ekinci, Cumhur & Ersan, Oğuz, 2022. "High-frequency trading and market quality: The case of a “slightly exposed” market," International Review of Financial Analysis, Elsevier, vol. 79(C).
    15. Roşu, Ioanid, 2019. "Fast and slow informed trading," Journal of Financial Markets, Elsevier, vol. 43(C), pages 1-30.
    16. Viktor Manahov, 2021. "High‐frequency trading order cancellations and market quality: Is stricter regulation the answer?," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(4), pages 5385-5407, October.
    17. Rif, Alexandru & Utz, Sebastian, 2021. "Short-term stock price reversals after extreme downward price movements," The Quarterly Review of Economics and Finance, Elsevier, vol. 81(C), pages 123-133.
    18. Tripathi, Abhinava & Dixit, Alok & Vipul,, 2021. "Information content of order imbalance in an order-driven market: Indian Evidence," Finance Research Letters, Elsevier, vol. 41(C).
    19. Karolis Liaudinskas, 2022. "Human vs. Machine: Disposition Effect among Algorithmic and Human Day Traders," Working Paper 2022/6, Norges Bank.
    20. Irtisam, Rasheek & Sokolov, Konstantin, 2023. "Do stock exchanges specialize? Evidence from the New Jersey transaction tax proposal," Journal of Banking & Finance, Elsevier, vol. 154(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormnsc:v:69:y:2023:i:8:p:4413-4434. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.