IDEAS home Printed from https://ideas.repec.org/a/inm/ormnsc/v68y2022i10p7480-7496.html
   My bibliography  Save this article

Price Optimization Under the Finite-Mixture Logit Model

Author

Listed:
  • Ruben van de Geer

    (Beat Research B.V., 1012 WX Amsterdam, Netherlands)

  • Arnoud V. den Boer

    (Korteweg-de Vries Institute for Mathematics, University of Amsterdam, 1098 XG Amsterdam, Netherlands; Amsterdam Business School, University of Amsterdam, 1018 TV Amsterdam, Netherlands)

Abstract

We consider price optimization under the finite-mixture logit model. This model assumes that customers belong to one of a number of customer segments, where each customer segment chooses according to a multinomial logit model with segment-specific parameters. We reformulate the corresponding price optimization problem and develop a novel characterization. Leveraging this new characterization, we construct an algorithm that obtains prices at which the revenue is guaranteed to be at least ( 1 − ϵ ) times the maximum attainable revenue for any prespecified ϵ > 0 . Existing global optimization methods require exponential time in the number of products to obtain such a result, which practically means that the prices of only a handful of products can be optimized. The running time of our algorithm, however, is exponential in the number of customer segments and only polynomial in the number of products. This is of great practical value, because in applications, the number of products can be very large, whereas it has been found in various contexts that a low number of segments is sufficient to capture customer heterogeneity appropriately. The results of our numerical study show that (i) ignoring customer segmentation can be detrimental for the obtained revenue, (ii) heuristics for optimization can get stuck in local optima, and (iii) our algorithm runs fast on a broad range of problem instances.

Suggested Citation

  • Ruben van de Geer & Arnoud V. den Boer, 2022. "Price Optimization Under the Finite-Mixture Logit Model," Management Science, INFORMS, vol. 68(10), pages 7480-7496, October.
  • Handle: RePEc:inm:ormnsc:v:68:y:2022:i:10:p:7480-7496
    DOI: 10.1287/mnsc.2021.4272
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/mnsc.2021.4272
    Download Restriction: no

    File URL: https://libkey.io/10.1287/mnsc.2021.4272?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. repec:ebl:ecbull:v:12:y:2005:i:12:p:1-4 is not listed on IDEAS
    2. W. Zachary Rayfield & Paat Rusmevichientong & Huseyin Topaloglu, 2015. "Approximation Methods for Pricing Problems Under the Nested Logit Model with Price Bounds," INFORMS Journal on Computing, INFORMS, vol. 27(2), pages 335-357, May.
    3. Aydın Alptekinoğlu & John H. Semple, 2016. "The Exponomial Choice Model: A New Alternative for Assortment and Price Optimization," Operations Research, INFORMS, vol. 64(1), pages 79-93, February.
    4. Peter M. Guadagni & John D. C. Little, 1983. "A Logit Model of Brand Choice Calibrated on Scanner Data," Marketing Science, INFORMS, vol. 2(3), pages 203-238.
    5. Thierry Delahaye & Rodrigo Acuna-Agost & Nicolas Bondoux & Anh-Quan Nguyen & Mourad Boudia, 2017. "Data-driven models for itinerary preferences of air travelers and application for dynamic pricing optimization," Journal of Revenue and Pricing Management, Palgrave Macmillan, vol. 16(6), pages 621-639, December.
    6. Greene, William H. & Hensher, David A., 2003. "A latent class model for discrete choice analysis: contrasts with mixed logit," Transportation Research Part B: Methodological, Elsevier, vol. 37(8), pages 681-698, September.
    7. Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521766555.
    8. Hongmin Li & Woonghee Tim Huh, 2011. "Pricing Multiple Products with the Multinomial Logit and Nested Logit Models: Concavity and Implications," Manufacturing & Service Operations Management, INFORMS, vol. 13(4), pages 549-563, October.
    9. Paat Rusmevichientong & David Shmoys & Chaoxu Tong & Huseyin Topaloglu, 2014. "Assortment Optimization under the Multinomial Logit Model with Random Choice Parameters," Production and Operations Management, Production and Operations Management Society, vol. 23(11), pages 2023-2039, November.
    10. Goker Aydin & Evan L. Porteus, 2008. "Joint Inventory and Pricing Decisions for an Assortment," Operations Research, INFORMS, vol. 56(5), pages 1247-1255, October.
    11. Ward Hanson & Kipp Martin, 1996. "Optimizing Multinomial Logit Profit Functions," Management Science, INFORMS, vol. 42(7), pages 992-1003, July.
    12. Jaroslav Fowkes & Nicholas Gould & Chris Farmer, 2013. "A branch and bound algorithm for the global optimization of Hessian Lipschitz continuous functions," Journal of Global Optimization, Springer, vol. 56(4), pages 1791-1815, August.
    13. Lingxiu Dong & Panos Kouvelis & Zhongjun Tian, 2009. "Dynamic Pricing and Inventory Control of Substitute Products," Manufacturing & Service Operations Management, INFORMS, vol. 11(2), pages 317-339, December.
    14. Junyi Shen, 2009. "Latent class model or mixed logit model? A comparison by transport mode choice data," Applied Economics, Taylor & Francis Journals, vol. 41(22), pages 2915-2924.
    15. Yalç{i}n Akçay & Harihara Prasad Natarajan & Susan H. Xu, 2010. "Joint Dynamic Pricing of Multiple Perishable Products Under Consumer Choice," Management Science, INFORMS, vol. 56(8), pages 1345-1361, August.
    16. Hongmin Li & Scott Webster, 2017. "Optimal Pricing of Correlated Product Options Under the Paired Combinatorial Logit Model," Operations Research, INFORMS, vol. 65(5), pages 1215-1230, October.
    17. Guang Li & Paat Rusmevichientong & Huseyin Topaloglu, 2015. "The d -Level Nested Logit Model: Assortment and Price Optimization Problems," Operations Research, INFORMS, vol. 63(2), pages 325-342, April.
    18. Riccardo Scarpa & Mara Thiene, 2005. "Destination Choice Models for Rock Climbing in the Northeastern Alps: A Latent-Class Approach Based on Intensity of Preferences," Land Economics, University of Wisconsin Press, vol. 81(3).
    19. Woonghee Tim Huh & Hongmin Li, 2015. "Technical Note—Pricing Under the Nested Attraction Model with a Multistage Choice Structure," Operations Research, INFORMS, vol. 63(4), pages 840-850, August.
    20. Bacel Maddah & Ebru K. Bish, 2007. "Joint pricing, assortment, and inventory decisions for a retailer's product line," Naval Research Logistics (NRL), John Wiley & Sons, vol. 54(3), pages 315-330, April.
    21. James Dong & A. Serdar Simsek & Huseyin Topaloglu, 2019. "Pricing Problems under the Markov Chain Choice Model," Production and Operations Management, Production and Operations Management Society, vol. 28(1), pages 157-175, January.
    22. Guillermo Gallego & Ruxian Wang, 2014. "Multiproduct Price Optimization and Competition Under the Nested Logit Model with Product-Differentiated Price Sensitivities," Operations Research, INFORMS, vol. 62(2), pages 450-461, April.
    23. Chandra R. Bhat, 1997. "An Endogenous Segmentation Mode Choice Model with an Application to Intercity Travel," Transportation Science, INFORMS, vol. 31(1), pages 34-48, February.
    24. Raphael Thomadsen, 2005. "Existence of pure strategy equilibria among geographically dispersed firms," Economics Bulletin, AccessEcon, vol. 12(12), pages 1-4.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hongmin Li & Scott Webster & Nicholas Mason & Karl Kempf, 2019. "Product-Line Pricing Under Discrete Mixed Multinomial Logit Demand," Service Science, INFORMS, vol. 21(1), pages 14-28, January.
    2. Hongmin Li & Scott Webster & Gwangjae Yu, 2020. "Product Design Under Multinomial Logit Choices: Optimization of Quality and Prices in an Evolving Product Line," Manufacturing & Service Operations Management, INFORMS, vol. 22(5), pages 1011-1025, September.
    3. Woonghee T. Huh & Hongmin Li, 2023. "Product‐line pricing with dual objective of profit and consumer surplus," Production and Operations Management, Production and Operations Management Society, vol. 32(4), pages 1223-1242, April.
    4. Hongmin Li & Scott Webster, 2017. "Optimal Pricing of Correlated Product Options Under the Paired Combinatorial Logit Model," Operations Research, INFORMS, vol. 65(5), pages 1215-1230, October.
    5. Strauss, Arne K. & Klein, Robert & Steinhardt, Claudius, 2018. "A review of choice-based revenue management: Theory and methods," European Journal of Operational Research, Elsevier, vol. 271(2), pages 375-387.
    6. Zhenzhen Yan & Karthik Natarajan & Chung Piaw Teo & Cong Cheng, 2022. "A Representative Consumer Model in Data-Driven Multiproduct Pricing Optimization," Management Science, INFORMS, vol. 68(8), pages 5798-5827, August.
    7. Schlicher, Loe & Lurkin, Virginie, 2022. "Stable allocations for choice-based collaborative price setting," European Journal of Operational Research, Elsevier, vol. 302(3), pages 1242-1254.
    8. Woonghee Tim Huh & Hongmin Li, 2015. "Technical Note—Pricing Under the Nested Attraction Model with a Multistage Choice Structure," Operations Research, INFORMS, vol. 63(4), pages 840-850, August.
    9. Rui Chen & Hai Jiang, 2020. "Capacitated assortment and price optimization under the nested logit model," Journal of Global Optimization, Springer, vol. 77(4), pages 895-918, August.
    10. Hongmin Li, 2020. "Optimal Pricing Under Diffusion-Choice Models," Operations Research, INFORMS, vol. 68(1), pages 115-133, January.
    11. Xiaobo Li & Hailong Sun & Chung Piaw Teo, 2022. "Convex Optimization for Bundle Size Pricing Problem," Management Science, INFORMS, vol. 68(2), pages 1095-1106, February.
    12. Hai Jiang & Rui Chen & He Sun, 2017. "Multiproduct price optimization under the multilevel nested logit model," Annals of Operations Research, Springer, vol. 254(1), pages 131-164, July.
    13. Mika Sumida & Guillermo Gallego & Paat Rusmevichientong & Huseyin Topaloglu & James Davis, 2021. "Revenue-Utility Tradeoff in Assortment Optimization Under the Multinomial Logit Model with Totally Unimodular Constraints," Management Science, INFORMS, vol. 67(5), pages 2845-2869, May.
    14. James M. Davis & Huseyin Topaloglu & David P. Williamson, 2017. "Pricing Problems Under the Nested Logit Model with a Quality Consistency Constraint," INFORMS Journal on Computing, INFORMS, vol. 29(1), pages 54-76, February.
    15. Anton J. Kleywegt & Hongzhang Shao, 2022. "Revenue Management Under the Markov Chain Choice Model with Joint Price and Assortment Decisions," Papers 2204.04774, arXiv.org.
    16. Chen, Junlin & Xiong, Jinghong & Chen, Guobao & Liu, Xin & Yan, Peng & Jiang, Hai, 2024. "Optimal instant discounts of multiple ride options at a ride-hailing aggregator," European Journal of Operational Research, Elsevier, vol. 314(2), pages 718-734.
    17. Srikanth Jagabathula & Paat Rusmevichientong, 2017. "Nonparametric Joint Assortment and Price Choice Model," Management Science, INFORMS, vol. 63(9), pages 3128-3145, September.
    18. Guillermo Gallego & Huseyin Topaloglu, 2014. "Constrained Assortment Optimization for the Nested Logit Model," Management Science, INFORMS, vol. 60(10), pages 2583-2601, October.
    19. Ruxian Wang & Zizhuo Wang, 2017. "Consumer Choice Models with Endogenous Network Effects," Management Science, INFORMS, vol. 63(11), pages 3944-3960, November.
    20. Chenhao Du & William L. Cooper & Zizhuo Wang, 2016. "Optimal Pricing for a Multinomial Logit Choice Model with Network Effects," Operations Research, INFORMS, vol. 64(2), pages 441-455, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormnsc:v:68:y:2022:i:10:p:7480-7496. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.