IDEAS home Printed from https://ideas.repec.org/a/inm/ormnsc/v67y2021i5p2813-2827.html
   My bibliography  Save this article

Preference Elicitation for Participatory Budgeting

Author

Listed:
  • Gerdus Benadè

    (Questrom School of Business, Boston University, Boston, Massachusetts 02215)

  • Swaprava Nath

    (Department of Computer Science and Engineering, Indian Institute of Technology Kanpur, 208016 Kanpur, India)

  • Ariel D. Procaccia

    (School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138)

  • Nisarg Shah

    (Department of Computer Science, University of Toronto, Toronto, Ontario M5S 2E4, Canada)

Abstract

Participatory budgeting enables the allocation of public funds by collecting and aggregating individual preferences. It has already had a sizable real-world impact, but making the most of this new paradigm requires rethinking some of the basics of computational social choice, including the very way in which individuals express their preferences. We attempt to maximize social welfare by using observed votes as proxies for voters’ unknown underlying utilities, and analytically compare four preference elicitation methods: knapsack votes, rankings by value or value for money, and threshold approval votes. We find that threshold approval voting is qualitatively superior, and also performs well in experiments using data from real participatory budgeting elections.

Suggested Citation

  • Gerdus Benadè & Swaprava Nath & Ariel D. Procaccia & Nisarg Shah, 2021. "Preference Elicitation for Participatory Budgeting," Management Science, INFORMS, vol. 67(5), pages 2813-2827, May.
  • Handle: RePEc:inm:ormnsc:v:67:y:2021:i:5:p:2813-2827
    DOI: 10.1287/mnsc.2020.3666
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/mnsc.2020.3666
    Download Restriction: no

    File URL: https://libkey.io/10.1287/mnsc.2020.3666?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. George B. Dantzig, 1957. "Discrete-Variable Extremum Problems," Operations Research, INFORMS, vol. 5(2), pages 266-288, April.
    2. Young, H. P., 1988. "Condorcet's Theory of Voting," American Political Science Review, Cambridge University Press, vol. 82(4), pages 1231-1244, December.
    3. A. Charnes & W. W. Cooper, 1962. "Programming with linear fractional functionals," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 9(3‐4), pages 181-186, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andrea Aveni & Ludovico Crippa & Giulio Principi, 2024. "On the Weighted Top-Difference Distance: Axioms, Aggregation, and Approximation," Papers 2403.15198, arXiv.org, revised Mar 2024.
    2. Andrea C. Hupman & Jay Simon, 2023. "The Legacy of Peter Fishburn: Foundational Work and Lasting Impact," Decision Analysis, INFORMS, vol. 20(1), pages 1-15, March.
    3. Yurun Ge & Lucas Bottcher & Tom Chou & Maria R. D'Orsogna, 2024. "A knapsack for collective decision-making," Papers 2409.13236, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Azarnoosh Kafi & Behrouz Daneshian & Mohsen Rostamy-Malkhalifeh, 2021. "Forecasting the confidence interval of efficiency in fuzzy DEA," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 31(1), pages 41-59.
    2. Tunjo Perić & Josip Matejaš & Zoran Babić, 2023. "Advantages, sensitivity and application efficiency of the new iterative method to solve multi-objective linear fractional programming problem," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 31(3), pages 751-767, September.
    3. Chen, Ya & Pan, Yongbin & Liu, Haoxiang & Wu, Huaqing & Deng, Guangwei, 2023. "Efficiency analysis of Chinese universities with shared inputs: An aggregated two-stage network DEA approach," Socio-Economic Planning Sciences, Elsevier, vol. 90(C).
    4. Kristiaan Kerstens & Jafar Sadeghi & Ignace Van de Woestyne, 2020. "Plant capacity notions in a non-parametric framework: a brief review and new graph or non-oriented plant capacities," Annals of Operations Research, Springer, vol. 288(2), pages 837-860, May.
    5. Yande Gong & Joe Zhu & Ya Chen & Wade D. Cook, 2018. "DEA as a tool for auditing: application to Chinese manufacturing industry with parallel network structures," Annals of Operations Research, Springer, vol. 263(1), pages 247-269, April.
    6. Martello, Silvano & Pisinger, David & Toth, Paolo, 2000. "New trends in exact algorithms for the 0-1 knapsack problem," European Journal of Operational Research, Elsevier, vol. 123(2), pages 325-332, June.
    7. Johannes König & Carsten Schröder, 2018. "Inequality-minimization with a given public budget," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 16(4), pages 607-629, December.
    8. Chakravarty, Surajeet & Kaplan, Todd R. & Myles, Gareth, 2018. "When costly voting is beneficial," Journal of Public Economics, Elsevier, vol. 167(C), pages 33-42.
    9. Toyotaka Sakai, 2017. "Considering Collective Choice: The Route 328 Problem in Kodaira City," The Japanese Economic Review, Japanese Economic Association, vol. 68(3), pages 323-332, September.
    10. Harald Dyckhoff & Katrin Allen, 1999. "Theoretische Begründung einer Effizienzanalyse mittels Data Envelopment Analysis (DEA)," Schmalenbach Journal of Business Research, Springer, vol. 51(5), pages 411-436, May.
    11. Changyu Zhou & Guohe Huang & Jiapei Chen, 2019. "A Type-2 Fuzzy Chance-Constrained Fractional Integrated Modeling Method for Energy System Management of Uncertainties and Risks," Energies, MDPI, vol. 12(13), pages 1-21, June.
    12. Yu, Shasha & Lei, Ming & Deng, Honghui, 2023. "Evaluation to fixed-sum-outputs DMUs by non-oriented equilibrium efficient frontier DEA approach with Nash bargaining-based selection," Omega, Elsevier, vol. 115(C).
    13. Phung, Manh-Trung & Cheng, Cheng-Ping & Guo, Chuanyin & Kao, Chen-Yu, 2020. "Mixed Network DEA with Shared Resources: A Case of Measuring Performance for Banking Industry," Operations Research Perspectives, Elsevier, vol. 7(C).
    14. Eric Kamwa, 2019. "On the Likelihood of the Borda Effect: The Overall Probabilities for General Weighted Scoring Rules and Scoring Runoff Rules," Group Decision and Negotiation, Springer, vol. 28(3), pages 519-541, June.
    15. Chen, Kuan-Chen & Lin, Sun-Yuan & Yu, Ming-Miin, 2022. "Exploring the efficiency of hospital and pharmacy utilizations in Taiwan: An application of dynamic network data envelopment analysis," Socio-Economic Planning Sciences, Elsevier, vol. 84(C).
    16. Stephen Gordon & Michel Truchon, 2008. "Social choice, optimal inference and figure skating," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 30(2), pages 265-284, February.
    17. Richard S. Barr & Kory A. Killgo & Thomas F. Siems & Sheri Zimmel, 1999. "Evaluating the productive efficiency and performance of U.S. commercial banks," Financial Industry Studies Working Paper 99-3, Federal Reserve Bank of Dallas.
    18. Maziar Sahamkhadam, 2021. "Dynamic copula-based expectile portfolios," Journal of Asset Management, Palgrave Macmillan, vol. 22(3), pages 209-223, May.
    19. Mehdi Toloo & Rouhollah Khodabandelou & Amar Oukil, 2022. "A Comprehensive Bibliometric Analysis of Fractional Programming (1965–2020)," Mathematics, MDPI, vol. 10(11), pages 1-21, May.
    20. B. Golany & N. Goldberg & U. Rothblum, 2015. "Allocating multiple defensive resources in a zero-sum game setting," Annals of Operations Research, Springer, vol. 225(1), pages 91-109, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormnsc:v:67:y:2021:i:5:p:2813-2827. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.