IDEAS home Printed from https://ideas.repec.org/a/inm/ormnsc/v59y2013i7p1650-1670.html
   My bibliography  Save this article

A Game-Theoretic Model of International Influenza Vaccination Coordination

Author

Listed:
  • Hamed Mamani

    (Information Systems and Operations Management Department, Foster School of Business, University of Washington, Seattle, Washington 98195)

  • Stephen E. Chick

    (Technology and Operations Management Area, INSEAD, 77305 Fontainebleau, France)

  • David Simchi-Levi

    (Operations Research Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139)

Abstract

Influenza vaccination decisions in one country can influence the size of an outbreak in other countries due to interdependent risks from infectious disease transmission. This paper examines the inefficiency in the allocation of influenza vaccines that is due to interdependent risk of infection across borders and proposes a contractual mechanism to reduce such inefficiencies. The proposed contract is based on an epidemic model that accounts for intranational transmission and that from a source country where the dominant strain emerges. The contract reduces the overall financial burden of infection globally and improves the total number infected by seasonal influenza outbreaks. This is consistent with recent recommendations to improve pandemic preparedness. Numerical experiments demonstrate that the benefits of the contract can prevent millions of influenza cases and save tens of millions of dollars, and that the benefits are even greater when cross-border transmission is higher, even if cross-border transmission parameters have moderate estimation errors. This paper was accepted by Martin Lariviere, operations management.

Suggested Citation

  • Hamed Mamani & Stephen E. Chick & David Simchi-Levi, 2013. "A Game-Theoretic Model of International Influenza Vaccination Coordination," Management Science, INFORMS, vol. 59(7), pages 1650-1670, July.
  • Handle: RePEc:inm:ormnsc:v:59:y:2013:i:7:p:1650-1670
    DOI: 10.1287/mnsc.1120.1661
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/mnsc.1120.1661
    Download Restriction: no

    File URL: https://libkey.io/10.1287/mnsc.1120.1661?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Laura J. Kornish & Ralph L. Keeney, 2008. "Repeated Commit-or-Defer Decisions with a Deadline: The Influenza Vaccine Composition," Operations Research, INFORMS, vol. 56(3), pages 527-541, June.
    2. Soo-Haeng Cho, 2010. "The Optimal Composition of Influenza Vaccines Subject to Random Production Yields," Manufacturing & Service Operations Management, INFORMS, vol. 12(2), pages 256-277, November.
    3. Joseph T Wu & Gabriel M Leung & Marc Lipsitch & Ben S Cooper & Steven Riley, 2009. "Hedging against Antiviral Resistance during the Next Influenza Pandemic Using Small Stockpiles of an Alternative Chemotherapy," PLOS Medicine, Public Library of Science, vol. 6(5), pages 1-11, May.
    4. Osman Y. Özaltın & Oleg A. Prokopyev & Andrew J. Schaefer & Mark S. Roberts, 2011. "Optimizing the Societal Benefits of the Annual Influenza Vaccine: A Stochastic Programming Approach," Operations Research, INFORMS, vol. 59(5), pages 1131-1143, October.
    5. Brandeau, Margaret L. & Zaric, Gregory S. & Richter, Anke, 2003. "Resource allocation for control of infectious diseases in multiple independent populations: beyond cost-effectiveness analysis," Journal of Health Economics, Elsevier, vol. 22(4), pages 575-598, July.
    6. Peng Sun & Liu Yang & Francis de Véricourt, 2009. "Selfish Drug Allocation for Containing an International Influenza Pandemic at the Onset," Operations Research, INFORMS, vol. 57(6), pages 1320-1332, December.
    7. Stephen E. Chick & Sada Soorapanth & James S. Koopman, 2003. "Inferring Infection Transmission Parameters That Influence Water Treatment Decisions," Management Science, INFORMS, vol. 49(7), pages 920-935, July.
    8. Laurie Garrett & David P Fidler, 2007. "Sharing H5N1 Viruses to Stop a Global Influenza Pandemic," PLOS Medicine, Public Library of Science, vol. 4(11), pages 1-3, November.
    9. Joseph T. Wu & Lawrence M. Wein & Alan S. Perelson, 2005. "Optimization of Influenza Vaccine Selection," Operations Research, INFORMS, vol. 53(3), pages 456-476, June.
    10. Serguei Netessine & Fuqiang Zhang, 2005. "Positive vs. Negative Externalities in Inventory Management: Implications for Supply Chain Design," Manufacturing & Service Operations Management, INFORMS, vol. 7(1), pages 58-73, January.
    11. Stephen E. Chick & Hamed Mamani & David Simchi-Levi, 2008. "Supply Chain Coordination and Influenza Vaccination," Operations Research, INFORMS, vol. 56(6), pages 1493-1506, December.
    12. Vedran Kordic (ed.), 2008. "Supply Chain," Books, IntechOpen, number 26, January-J.
    13. Sarang Deo & Charles J. Corbett, 2009. "Cournot Competition Under Yield Uncertainty: The Case of the U.S. Influenza Vaccine Market," Manufacturing & Service Operations Management, INFORMS, vol. 11(4), pages 563-576, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stephen E. Chick & Sameer Hasija & Javad Nasiry, 2017. "Information Elicitation and Influenza Vaccine Production," Operations Research, INFORMS, vol. 65(1), pages 75-96, February.
    2. Stephen E. Chick & Sameer Hasija & Javad Nasiry, 2017. "Information Elicitation and Influenza Vaccine Production," Operations Research, INFORMS, vol. 65(1), pages 75-96, February.
    3. Duijzer, Lotty Evertje & van Jaarsveld, Willem & Dekker, Rommert, 2018. "Literature review: The vaccine supply chain," European Journal of Operational Research, Elsevier, vol. 268(1), pages 174-192.
    4. Osman Y. Özaltın & Oleg A. Prokopyev & Andrew J. Schaefer, 2018. "Optimal Design of the Seasonal Influenza Vaccine with Manufacturing Autonomy," INFORMS Journal on Computing, INFORMS, vol. 30(2), pages 371-387, May.
    5. Lin, Qi & Zhao, Qiuhong & Lev, Benjamin, 2022. "Influenza vaccine supply chain coordination under uncertain supply and demand," European Journal of Operational Research, Elsevier, vol. 297(3), pages 930-948.
    6. Guo, Feiyu & Cao, Erbao, 2021. "Can reference points explain vaccine hesitancy? A new perspective on their formation and updating," Omega, Elsevier, vol. 99(C).
    7. Peng Sun & Liu Yang & Francis de Véricourt, 2009. "Selfish Drug Allocation for Containing an International Influenza Pandemic at the Onset," Operations Research, INFORMS, vol. 57(6), pages 1320-1332, December.
    8. Osman Y. Özaltın & Oleg A. Prokopyev & Andrew J. Schaefer & Mark S. Roberts, 2011. "Optimizing the Societal Benefits of the Annual Influenza Vaccine: A Stochastic Programming Approach," Operations Research, INFORMS, vol. 59(5), pages 1131-1143, October.
    9. Muckstadt, John A. & Klein, Michael G. & Jackson, Peter L. & Gougelet, Robert M. & Hupert, Nathaniel, 2023. "Efficient and effective large-scale vaccine distribution," International Journal of Production Economics, Elsevier, vol. 262(C).
    10. Choudhury, Nishat Alam & Ramkumar, M. & Schoenherr, Tobias & Singh, Shalabh, 2023. "The role of operations and supply chain management during epidemics and pandemics: Potential and future research opportunities," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 175(C).
    11. Kenan Arifoglu & Sarang Deo & Seyed M. R. Iravani, 2012. "Consumption Externality and Yield Uncertainty in the Influenza Vaccine Supply Chain: Interventions in Demand and Supply Sides," Management Science, INFORMS, vol. 58(6), pages 1072-1091, June.
    12. Ece Zeliha Demirci & Nesim Kohen Erkip, 2020. "Designing intervention scheme for vaccine market: a bilevel programming approach," Flexible Services and Manufacturing Journal, Springer, vol. 32(2), pages 453-485, June.
    13. Soo-Haeng Cho, 2010. "The Optimal Composition of Influenza Vaccines Subject to Random Production Yields," Manufacturing & Service Operations Management, INFORMS, vol. 12(2), pages 256-277, November.
    14. Duijzer, Lotty Evertje & van Jaarsveld, Willem & Dekker, Rommert, 2018. "The benefits of combining early aspecific vaccination with later specific vaccination," European Journal of Operational Research, Elsevier, vol. 271(2), pages 606-619.
    15. Westerink-Duijzer, L.E. & van Jaarsveld, W.L. & Wallinga, J. & Dekker, R., 2015. "Dose-optimal vaccine allocation over multiple populations," Econometric Institute Research Papers EI2015-29, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    16. Alexandar Angelus & Özalp Özer, 2022. "On the large‐scale production of a new vaccine," Production and Operations Management, Production and Operations Management Society, vol. 31(7), pages 3043-3060, July.
    17. Yarmand, Hamed & Ivy, Julie S. & Denton, Brian & Lloyd, Alun L., 2014. "Optimal two-phase vaccine allocation to geographically different regions under uncertainty," European Journal of Operational Research, Elsevier, vol. 233(1), pages 208-219.
    18. Maria C. Jansen & Osman Y. Özaltın, 2017. "Note on Cournot Competition Under Yield Uncertainty," Manufacturing & Service Operations Management, INFORMS, vol. 19(2), pages 305-308, May.
    19. Soo-Haeng Cho & Christopher S. Tang, 2013. "Advance Selling in a Supply Chain Under Uncertain Supply and Demand," Manufacturing & Service Operations Management, INFORMS, vol. 15(2), pages 305-319, May.
    20. Xie, Lei & Hou, Pengwen & Han, Hongshuai, 2021. "Implications of government subsidy on the vaccine product R&D when the buyer is risk averse," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 146(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormnsc:v:59:y:2013:i:7:p:1650-1670. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.