IDEAS home Printed from https://ideas.repec.org/a/inm/ormnsc/v58y2012i9p1715-1731.html
   My bibliography  Save this article

Dynamic Pricing with Financial Milestones: Feedback-Form Policies

Author

Listed:
  • Omar Besbes

    (Graduate School of Business, Columbia University, New York, New York 10025)

  • Costis Maglaras

    (Graduate School of Business, Columbia University, New York, New York 10025)

Abstract

We study a seller that starts with an initial inventory of goods, has a target horizon over which to sell the goods, and is subject to a set of financial milestone constraints on the revenues and sales that need to be achieved at different time points along the sales horizon. We characterize the revenue maximizing dynamic pricing policy for the seller and highlight the effect of revenue and sales milestones on its structure. The optimal policy can be written in feedback form, where the price at each point in time is selected so as to track the most stringent among all future milestones. Building on that observation, we propose a discrete-review policy that aims to dynamically track the appropriate milestone constraint and show that this simple and practical policy is near optimal in settings with large initial capacity and long sales horizons even in settings with no advance demand model information. One motivating application comes from the sales of new multiunit, residential real estate developments, where intermediate milestone constraints play an important role in their financing and construction. This paper was accepted by Gérard P. Cachon, stochastic models and simulation.

Suggested Citation

  • Omar Besbes & Costis Maglaras, 2012. "Dynamic Pricing with Financial Milestones: Feedback-Form Policies," Management Science, INFORMS, vol. 58(9), pages 1715-1731, September.
  • Handle: RePEc:inm:ormnsc:v:58:y:2012:i:9:p:1715-1731
    DOI: 10.1287/mnsc.1110.1513
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/mnsc.1110.1513
    Download Restriction: no

    File URL: https://libkey.io/10.1287/mnsc.1110.1513?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. William L. Cooper, 2002. "Asymptotic Behavior of an Allocation Policy for Revenue Management," Operations Research, INFORMS, vol. 50(4), pages 720-727, August.
    2. Victor F. Araman & René Caldentey, 2009. "Dynamic Pricing for Nonperishable Products with Demand Learning," Operations Research, INFORMS, vol. 57(5), pages 1169-1188, October.
    3. Guillermo Gallego & Garrett van Ryzin, 1994. "Optimal Dynamic Pricing of Inventories with Stochastic Demand over Finite Horizons," Management Science, INFORMS, vol. 40(8), pages 999-1020, August.
    4. Achal Bassamboo & J. Michael Harrison & Assaf Zeevi, 2006. "Design and Control of a Large Call Center: Asymptotic Analysis of an LP-Based Method," Operations Research, INFORMS, vol. 54(3), pages 419-435, June.
    5. Martin I. Reiman & Qiong Wang, 2008. "An Asymptotically Optimal Policy for a Quantity-Based Network Revenue Management Problem," Mathematics of Operations Research, INFORMS, vol. 33(2), pages 257-282, May.
    6. Nicola Secomandi, 2008. "An Analysis of the Control-Algorithm Re-solving Issue in Inventory and Revenue Management," Manufacturing & Service Operations Management, INFORMS, vol. 10(3), pages 468-483, December.
    7. Constantinos Maglaras & Joern Meissner, 2003. "Dynamic Pricing Strategies for Multi-Product Revenue Management Problems," Working Papers MRG/0002, Department of Management Science, Lancaster University, revised Nov 2005.
    8. Noah Gans & Garrett van Ryzin, 1997. "Optimal Control of a Multiclass, Flexible Queueing System," Operations Research, INFORMS, vol. 45(5), pages 677-693, October.
    9. Omar Besbes & Assaf Zeevi, 2009. "Dynamic Pricing Without Knowing the Demand Function: Risk Bounds and Near-Optimal Algorithms," Operations Research, INFORMS, vol. 57(6), pages 1407-1420, December.
    10. Omar Besbes & Costis Maglaras, 2009. "Revenue Optimization for a Make-to-Order Queue in an Uncertain Market Environment," Operations Research, INFORMS, vol. 57(6), pages 1438-1450, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuqian Xu & Lingjiong Zhu & Michael Pinedo, 2020. "Operational Risk Management: A Stochastic Control Framework with Preventive and Corrective Controls," Operations Research, INFORMS, vol. 68(6), pages 1804-1825, November.
    2. Cao, Ping & Zhao, Nenggui & Wu, Jie, 2019. "Dynamic pricing with Bayesian demand learning and reference price effect," European Journal of Operational Research, Elsevier, vol. 279(2), pages 540-556.
    3. Heikki Peura & Derek W. Bunn, 2015. "Dynamic Pricing of Peak Production," Operations Research, INFORMS, vol. 63(6), pages 1262-1279, December.
    4. Lev Razumovskiy & Mariya Gerasimova & Nikolay Karenin, 2024. "Dynamic Pricing for Real Estate," Papers 2408.12553, arXiv.org.
    5. Radha Mookerjee & Subodha Kumar & Vijay S. Mookerjee, 2017. "Optimizing Performance-Based Internet Advertisement Campaigns," Operations Research, INFORMS, vol. 65(1), pages 38-54, February.
    6. Radha Mookerjee & Subodha Kumar & Vijay S. Mookerjee, 2017. "Optimizing Performance-Based Internet Advertisement Campaigns," Operations Research, INFORMS, vol. 65(1), pages 38-54, February.
    7. Longyuan Du & Ming Hu & Jiahua Wu, 2022. "Sales Effort Management Under All-or-Nothing Constraint," Management Science, INFORMS, vol. 68(7), pages 5109-5126, July.
    8. Ibrahim, Michael Nawar & Atiya, Amir F., 2016. "Analytical solutions to the dynamic pricing problem for time-normalized revenue," European Journal of Operational Research, Elsevier, vol. 254(2), pages 632-643.
    9. Jochen Gönsch & Michael Hassler & Rouven Schur, 2018. "Optimizing conditional value-at-risk in dynamic pricing," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 40(3), pages 711-750, July.
    10. Stefanus Jasin, 2014. "Reoptimization and Self-Adjusting Price Control for Network Revenue Management," Operations Research, INFORMS, vol. 62(5), pages 1168-1178, October.
    11. Omar Besbes & Dan A. Iancu & Nikolaos Trichakis, 2018. "Dynamic Pricing Under Debt: Spiraling Distortions and Efficiency Losses," Management Science, INFORMS, vol. 64(10), pages 4572-4589, October.
    12. Ayvaz-Cavdaroglu, Nur & Kachani, Soulaymane & Maglaras, Costis, 2016. "Revenue management with minimax regret negotiations," Omega, Elsevier, vol. 63(C), pages 12-22.
    13. Longyuan Du & Ming Hu & Jiahua Wu, 2022. "Contingent stimulus in crowdfunding," Production and Operations Management, Production and Operations Management Society, vol. 31(9), pages 3543-3558, September.
    14. Dan A. Iancu & Nikolaos Trichakis & Gerry Tsoukalas, 2017. "Is Operating Flexibility Harmful Under Debt?," Management Science, INFORMS, vol. 63(6), pages 1730-1761, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stefanus Jasin, 2014. "Reoptimization and Self-Adjusting Price Control for Network Revenue Management," Operations Research, INFORMS, vol. 62(5), pages 1168-1178, October.
    2. Omar Besbes & Assaf Zeevi, 2012. "Blind Network Revenue Management," Operations Research, INFORMS, vol. 60(6), pages 1537-1550, December.
    3. Yiwei Chen & Vivek F. Farias, 2013. "Simple Policies for Dynamic Pricing with Imperfect Forecasts," Operations Research, INFORMS, vol. 61(3), pages 612-624, June.
    4. Pornpawee Bumpensanti & He Wang, 2020. "A Re-Solving Heuristic with Uniformly Bounded Loss for Network Revenue Management," Management Science, INFORMS, vol. 66(7), pages 2993-3009, July.
    5. Xiao, Baichun & Yang, Wei, 2021. "A Bayesian learning model for estimating unknown demand parameter in revenue management," European Journal of Operational Research, Elsevier, vol. 293(1), pages 248-262.
    6. Athanassios N. Avramidis & Arnoud V. Boer, 2021. "Dynamic pricing with finite price sets: a non-parametric approach," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 94(1), pages 1-34, August.
    7. Athanassios N. Avramidis, 2020. "A pricing problem with unknown arrival rate and price sensitivity," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 92(1), pages 77-106, August.
    8. Omar Besbes & Costis Maglaras, 2009. "Revenue Optimization for a Make-to-Order Queue in an Uncertain Market Environment," Operations Research, INFORMS, vol. 57(6), pages 1438-1450, December.
    9. Yanzhe (Murray) Lei & Stefanus Jasin & Amitabh Sinha, 2018. "Joint Dynamic Pricing and Order Fulfillment for E-commerce Retailers," Manufacturing & Service Operations Management, INFORMS, vol. 20(2), pages 269-284, May.
    10. Yang, Chaolin & Xiong, Yi, 2020. "Nonparametric advertising budget allocation with inventory constraint," European Journal of Operational Research, Elsevier, vol. 285(2), pages 631-641.
    11. Yossi Aviv & Mike Mingcheng Wei & Fuqiang Zhang, 2019. "Responsive Pricing of Fashion Products: The Effects of Demand Learning and Strategic Consumer Behavior," Management Science, INFORMS, vol. 65(7), pages 2982-3000, July.
    12. Peter Seele & Claus Dierksmeier & Reto Hofstetter & Mario D. Schultz, 2021. "Mapping the Ethicality of Algorithmic Pricing: A Review of Dynamic and Personalized Pricing," Journal of Business Ethics, Springer, vol. 170(4), pages 697-719, May.
    13. Dawsen Hwang & Patrick Jaillet & Vahideh Manshadi, 2021. "Online Resource Allocation Under Partially Predictable Demand," Operations Research, INFORMS, vol. 69(3), pages 895-915, May.
    14. Yiwei Chen & Cong Shi, 2023. "Network revenue management with online inverse batch gradient descent method," Production and Operations Management, Production and Operations Management Society, vol. 32(7), pages 2123-2137, July.
    15. Arnoud V. den Boer & N. Bora Keskin, 2020. "Discontinuous Demand Functions: Estimation and Pricing," Management Science, INFORMS, vol. 66(10), pages 4516-4534, October.
    16. Michael N. Katehakis & Yifeng Liu & Jian Yang, 2022. "A revisit to the markup practice of irreversible dynamic pricing," Annals of Operations Research, Springer, vol. 317(1), pages 77-105, October.
    17. Yongbo Xiao, 2018. "Dynamic pricing and replenishment: Optimality, bounds, and asymptotics," Naval Research Logistics (NRL), John Wiley & Sons, vol. 65(1), pages 3-25, February.
    18. Philipp Afèche & Barış Ata, 2013. "Bayesian Dynamic Pricing in Queueing Systems with Unknown Delay Cost Characteristics," Manufacturing & Service Operations Management, INFORMS, vol. 15(2), pages 292-304, May.
    19. Denis Sauré & Assaf Zeevi, 2013. "Optimal Dynamic Assortment Planning with Demand Learning," Manufacturing & Service Operations Management, INFORMS, vol. 15(3), pages 387-404, July.
    20. Martin I. Reiman & Qiong Wang, 2008. "An Asymptotically Optimal Policy for a Quantity-Based Network Revenue Management Problem," Mathematics of Operations Research, INFORMS, vol. 33(2), pages 257-282, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormnsc:v:58:y:2012:i:9:p:1715-1731. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.