IDEAS home Printed from https://ideas.repec.org/a/inm/ormnsc/v56y2010i7p1127-1145.html
   My bibliography  Save this article

Efficient Structures for Innovative Social Networks

Author

Listed:
  • William S. Lovejoy

    (Ross School of Business, University of Michigan, Ann Arbor, Michigan 48109)

  • Amitabh Sinha

    (Ross School of Business, University of Michigan, Ann Arbor, Michigan 48109)

Abstract

What lines of communication among members of an organization are most productive in the early, ideation phase of innovation? We investigate this question with a recombination and selection model of knowledge transfer operating through a social network. We find that ideation is accelerated when people in the organization dynamically churn through a large (ideally the entire population) set of conversational partners over time, which naturally begets short path lengths and eliminates information bottlenecks. Group meetings, in which the content of conversations is available to all for consideration, are another way to learn in parallel and accelerate the ideation process, although for complex problems they may not offer significant advantages over the best decentralized networks. The idealized core-periphery graphs emerge as an important family on the time-cost efficient frontier. New sociometrics for the analyses of innovation processes emerge from this investigation.

Suggested Citation

  • William S. Lovejoy & Amitabh Sinha, 2010. "Efficient Structures for Innovative Social Networks," Management Science, INFORMS, vol. 56(7), pages 1127-1145, July.
  • Handle: RePEc:inm:ormnsc:v:56:y:2010:i:7:p:1127-1145
    DOI: 10.1287/mnsc.1100.1168
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/mnsc.1100.1168
    Download Restriction: no

    File URL: https://libkey.io/10.1287/mnsc.1100.1168?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Julia Porter Liebeskind & Amalya Lumerman Oliver & Lynne Zucker & Marilynn Brewer, 1996. "Social networks, Learning, and Flexibility: Sourcing Scientific Knowledge in New Biotechnology Firms," Organization Science, INFORMS, vol. 7(4), pages 428-443, August.
    2. Ray Reagans & Ezra W. Zuckerman, 2001. "Networks, Diversity, and Productivity: The Social Capital of Corporate R&D Teams," Organization Science, INFORMS, vol. 12(4), pages 502-517, August.
    3. Melissa A. Schilling & Corey C. Phelps, 2007. "Interfirm Collaboration Networks: The Impact of Large-Scale Network Structure on Firm Innovation," Management Science, INFORMS, vol. 53(7), pages 1113-1126, July.
    4. Lee Fleming, 2001. "Recombinant Uncertainty in Technological Search," Management Science, INFORMS, vol. 47(1), pages 117-132, January.
    5. Atul Nerkar & Srikanth Paruchuri, 2005. "Evolution of R&D Capabilities: The Role of Knowledge Networks Within a Firm," Management Science, INFORMS, vol. 51(5), pages 771-785, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bin Sang & Nasrin Aghamohammadi & Rafidah Md Noor, 2024. "The Effects of Dynamic Strategy and Updating Network Structure Towards Customer Participation Innovation Performance," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 15(2), pages 5480-5510, June.
    2. Houxing Tang & Zhenzhong Ma & Jiuling Xiao & Lei Xiao, 2020. "Toward a more Efficient Knowledge Network in Innovation Ecosystems: A Simulated Study on Knowledge Management," Sustainability, MDPI, vol. 12(16), pages 1-18, August.
    3. Tian Heong Chan & Haibo Liu & Steffen Keck & Wenjie Tang, 2023. "When do teams generate valuable inventions? The moderating role of invention integrality on the effects of expertise similarity, network cohesion, and gender diversity," Production and Operations Management, Production and Operations Management Society, vol. 32(6), pages 1760-1777, June.
    4. Houxing Tang & Zhenzhong Ma & Lei Jing, 2024. "Interfirm Network Structure and Innovation Creation: a Simulation Study," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 15(2), pages 7622-7646, June.
    5. Ying-Yu Chen & Yi-Long Jaw, 2014. "How do business groups’ small world networks effect diversification, innovation, and internationalization?," Asia Pacific Journal of Management, Springer, vol. 31(4), pages 1019-1044, December.
    6. Wen Zhou & Nikita Koptyug & Shutao Ye & Yifan Jia & Xiaolong Lu, 2016. "An Extended N-Player Network Game and Simulation of Four Investment Strategies on a Complex Innovation Network," PLOS ONE, Public Library of Science, vol. 11(1), pages 1-18, January.
    7. Dass, Mayukh & Reddy, Srinivas K. & Iacobucci, Dawn, 2014. "A Network Bidder Behavior Model in Online Auctions: A Case of Fine Art Auctions," Journal of Retailing, Elsevier, vol. 90(4), pages 445-462.
    8. Liang, Liang & Alam, Ashraful & Sorwar, Ghulam & Yazdifar, Hassan & Eskandari, Rasol, 2021. "The combined network effect of sparse and interlocked connections in SMEs’ innovation," Technological Forecasting and Social Change, Elsevier, vol. 163(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Srikanth Paruchuri & Snehal Awate, 2017. "Organizational knowledge networks and local search: The role of intra‐organizational inventor networks," Strategic Management Journal, Wiley Blackwell, vol. 38(3), pages 657-675, March.
    2. Mahmoud Ibrahim Fallatah, 2021. "Innovating in the Desert: a Network Perspective on Knowledge Creation in Developing Countries," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 12(3), pages 1533-1551, September.
    3. Rajat Khanna & Isin Guler, 2022. "Degree assortativity in collaboration networks and invention performance," Strategic Management Journal, Wiley Blackwell, vol. 43(7), pages 1402-1430, July.
    4. Zhang, JingJing & Yan, Yan & Guan, JianCheng, 2019. "Recombinant distance, network governance and recombinant innovation," Technological Forecasting and Social Change, Elsevier, vol. 143(C), pages 260-272.
    5. Xuan Liu & Shan Jiang & Hsinchun Chen & Catherine A. Larson & Mihail C. Roco, 2015. "Modeling knowledge diffusion in scientific innovation networks: an institutional comparison between China and US with illustration for nanotechnology," Scientometrics, Springer;Akadémiai Kiadó, vol. 105(3), pages 1953-1984, December.
    6. Srikanth Paruchuri, 2010. "Intraorganizational Networks, Interorganizational Networks, and the Impact of Central Inventors: A Longitudinal Study of Pharmaceutical Firms," Organization Science, INFORMS, vol. 21(1), pages 63-80, February.
    7. Jee, Su Jung & Kwon, Minji & Ha, Jung Moon & Sohn, So Young, 2019. "Exploring the forward citation patterns of patents based on the evolution of technology fields," Journal of Informetrics, Elsevier, vol. 13(4).
    8. Goossen, Martin C. & Paruchuri, Srikanth, 2022. "Measurement errors and estimation biases with incomplete social networks: replication studies on intra-firm inventor network analysis," Research Policy, Elsevier, vol. 51(1).
    9. Harpreet Singh & David Kryscynski & Xinxin Li & Ram Gopal, 2016. "Pipes, pools, and filters: How collaboration networks affect innovative performance," Strategic Management Journal, Wiley Blackwell, vol. 37(8), pages 1649-1666, August.
    10. Gallo, Julie Le & Plunket, Anne, 2020. "Regional gatekeepers, inventor networks and inventive performance: Spatial and organizational channels," Research Policy, Elsevier, vol. 49(5).
    11. Konstantinos Grigoriou & Frank T. Rothaermel, 2017. "Organizing for knowledge generation: internal knowledge networks and the contingent effect of external knowledge sourcing," Strategic Management Journal, Wiley Blackwell, vol. 38(2), pages 395-414, February.
    12. Linus Dahlander & Siobhan O'Mahony & David M. Gann, 2016. "One foot in, one foot out: how does individuals' external search breadth affect innovation outcomes?," Strategic Management Journal, Wiley Blackwell, vol. 37(2), pages 280-302, February.
    13. Vikas A. Aggarwal & David H. Hsu & Andy Wu, 2020. "Organizing Knowledge Production Teams Within Firms for Innovation," Strategy Science, INFORMS, vol. 5(1), pages 1-16, March.
    14. Vikas A. Aggarwal, 2020. "Resource congestion in alliance networks: How a firm's partners’ partners influence the benefits of collaboration," Strategic Management Journal, Wiley Blackwell, vol. 41(4), pages 627-655, April.
    15. Rojas, Mariana Giovanna Andrade & Solis, Edgar Rogelio Ramirez & Zhu, John JianJun, 2018. "Innovation and network multiplexity: R&D and the concurrent effects of two collaboration networks in an emerging economy," Research Policy, Elsevier, vol. 47(6), pages 1111-1124.
    16. Castellani, Davide & Perri, Alessandra & Scalera, Vittoria G., 2022. "Knowledge integration in multinational enterprises: The role of inventors crossing national and organizational boundaries," Journal of World Business, Elsevier, vol. 57(3).
    17. Schilling, Melissa A. & Green, Elad, 2011. "Recombinant search and breakthrough idea generation: An analysis of high impact papers in the social sciences," Research Policy, Elsevier, vol. 40(10), pages 1321-1331.
    18. Lori Rosenkopf & Paul Almeida, 2003. "Overcoming Local Search Through Alliances and Mobility," Management Science, INFORMS, vol. 49(6), pages 751-766, June.
    19. Yi Zhang & Kaihua Chen & Guilong Zhu & Richard C. M. Yam & Jiancheng Guan, 2016. "Inter-organizational scientific collaborations and policy effects: an ego-network evolutionary perspective of the Chinese Academy of Sciences," Scientometrics, Springer;Akadémiai Kiadó, vol. 108(3), pages 1383-1415, September.
    20. Stefano Brusoni & Lorenzo Cassi & Simge Tuna, 2021. "Knowledge integration between technical change and strategy making," Journal of Evolutionary Economics, Springer, vol. 31(5), pages 1521-1552, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormnsc:v:56:y:2010:i:7:p:1127-1145. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.