IDEAS home Printed from https://ideas.repec.org/a/eee/techno/v127y2023ics0166497223001372.html
   My bibliography  Save this article

Innovation performance and licensing: The effect of the compositional quality of direct and indirect network ties

Author

Listed:
  • Sime, Serge
  • Hagedoorn, John
  • Tan, Hui

Abstract

Our research examines the effect of the compositional quality of firms’ direct and indirect network ties on their innovation performance in a licensing context. It addresses the theoretical and empirical puzzle of why firms that exhibit quite similar patterns in their direct and indirect ties with other firms may nonetheless exhibit heterogeneous innovation performance outcomes. Using licensing and patenting data of firms operating in the semiconductor industry, we find that the compositional quality of both direct and indirect ties, based on their relevant technological characteristics positively affect the innovation performance of firms (licensees). Moreover, combining the compositional quality of direct and indirect ties has a complementary, rather than a substitution effect on firms’ innovation performance.

Suggested Citation

  • Sime, Serge & Hagedoorn, John & Tan, Hui, 2023. "Innovation performance and licensing: The effect of the compositional quality of direct and indirect network ties," Technovation, Elsevier, vol. 127(C).
  • Handle: RePEc:eee:techno:v:127:y:2023:i:c:s0166497223001372
    DOI: 10.1016/j.technovation.2023.102826
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0166497223001372
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.technovation.2023.102826?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Edwin Mansfield, 1986. "Patents and Innovation: An Empirical Study," Management Science, INFORMS, vol. 32(2), pages 173-181, February.
    2. Joanne Oxley & Tetsuo Wada, 2009. "Alliance Structure and the Scope of Knowledge Transfer: Evidence from U.S.-Japan Agreements," Management Science, INFORMS, vol. 55(4), pages 635-649, April.
    3. Atul Nerkar & Srikanth Paruchuri, 2005. "Evolution of R&D Capabilities: The Role of Knowledge Networks Within a Firm," Management Science, INFORMS, vol. 51(5), pages 771-785, May.
    4. Michelle Gittelman & Bruce Kogut, 2003. "Does Good Science Lead to Valuable Knowledge? Biotechnology Firms and the Evolutionary Logic of Citation Patterns," Management Science, INFORMS, vol. 49(4), pages 366-382, April.
    5. Melissa A. Schilling & Corey C. Phelps, 2007. "Interfirm Collaboration Networks: The Impact of Large-Scale Network Structure on Firm Innovation," Management Science, INFORMS, vol. 53(7), pages 1113-1126, July.
    6. Lee Fleming, 2001. "Recombinant Uncertainty in Technological Search," Management Science, INFORMS, vol. 47(1), pages 117-132, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, P.E.N.G.F.E.I., 2024. "Pricing innovation: The anchoring effect in patent valuation," Technovation, Elsevier, vol. 136(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mahmoud Ibrahim Fallatah, 2021. "Innovating in the Desert: a Network Perspective on Knowledge Creation in Developing Countries," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 12(3), pages 1533-1551, September.
    2. Castellani, Davide & Perri, Alessandra & Scalera, Vittoria G., 2022. "Knowledge integration in multinational enterprises: The role of inventors crossing national and organizational boundaries," Journal of World Business, Elsevier, vol. 57(3).
    3. Srikanth Paruchuri & Snehal Awate, 2017. "Organizational knowledge networks and local search: The role of intra‐organizational inventor networks," Strategic Management Journal, Wiley Blackwell, vol. 38(3), pages 657-675, March.
    4. Wang, Fang, 2024. "Does the recombination of distant scientific knowledge generate valuable inventions? An analysis of pharmaceutical patents," Technovation, Elsevier, vol. 130(C).
    5. Guan, Jiancheng & Liu, Na, 2016. "Exploitative and exploratory innovations in knowledge network and collaboration network: A patent analysis in the technological field of nano-energy," Research Policy, Elsevier, vol. 45(1), pages 97-112.
    6. Hohberger, Jan, 2016. "Diffusion of science-based inventions," Technological Forecasting and Social Change, Elsevier, vol. 104(C), pages 66-77.
    7. William S. Lovejoy & Amitabh Sinha, 2010. "Efficient Structures for Innovative Social Networks," Management Science, INFORMS, vol. 56(7), pages 1127-1145, July.
    8. Goossen, Martin C. & Paruchuri, Srikanth, 2022. "Measurement errors and estimation biases with incomplete social networks: replication studies on intra-firm inventor network analysis," Research Policy, Elsevier, vol. 51(1).
    9. Harpreet Singh & David Kryscynski & Xinxin Li & Ram Gopal, 2016. "Pipes, pools, and filters: How collaboration networks affect innovative performance," Strategic Management Journal, Wiley Blackwell, vol. 37(8), pages 1649-1666, August.
    10. Rajat Khanna & Isin Guler, 2022. "Degree assortativity in collaboration networks and invention performance," Strategic Management Journal, Wiley Blackwell, vol. 43(7), pages 1402-1430, July.
    11. Corredoira, Rafael A. & Banerjee, Preeta M., 2015. "Measuring patent's influence on technological evolution: A study of knowledge spanning and subsequent inventive activity," Research Policy, Elsevier, vol. 44(2), pages 508-521.
    12. Zhang, JingJing & Yan, Yan & Guan, JianCheng, 2019. "Recombinant distance, network governance and recombinant innovation," Technological Forecasting and Social Change, Elsevier, vol. 143(C), pages 260-272.
    13. Jeongsik “Jay” Lee, 2010. "Heterogeneity, Brokerage, and Innovative Performance: Endogenous Formation of Collaborative Inventor Networks," Organization Science, INFORMS, vol. 21(4), pages 804-822, August.
    14. Paul Almeida & Anupama Phene & Sali Li, 2015. "The Influence of Ethnic Community Knowledge on Indian Inventor Innovativeness," Organization Science, INFORMS, vol. 26(1), pages 198-217, February.
    15. Xuan Liu & Shan Jiang & Hsinchun Chen & Catherine A. Larson & Mihail C. Roco, 2015. "Modeling knowledge diffusion in scientific innovation networks: an institutional comparison between China and US with illustration for nanotechnology," Scientometrics, Springer;Akadémiai Kiadó, vol. 105(3), pages 1953-1984, December.
    16. Rotolo, Daniele & Messeni Petruzzelli, Antonio, 2013. "When does centrality matter? Scientific productivity and the moderating role of research specialization and cross-community ties," MPRA Paper 53406, University Library of Munich, Germany.
    17. Vikas A. Aggarwal, 2020. "Resource congestion in alliance networks: How a firm's partners’ partners influence the benefits of collaboration," Strategic Management Journal, Wiley Blackwell, vol. 41(4), pages 627-655, April.
    18. Belkhouja, Mustapha & Yoon, Hyungseok (David), 2018. "How does openness influence the impact of a scholar’s research? An analysis of business scholars’ citations over their careers," Research Policy, Elsevier, vol. 47(10), pages 2037-2047.
    19. Schilling, Melissa A. & Green, Elad, 2011. "Recombinant search and breakthrough idea generation: An analysis of high impact papers in the social sciences," Research Policy, Elsevier, vol. 40(10), pages 1321-1331.
    20. Quatraro, Francesco & Scandura, Alessandra, 2020. "Regional patterns of unrelated technological diversification: the role of academic inventors," Department of Economics and Statistics Cognetti de Martiis LEI & BRICK - Laboratory of Economics of Innovation "Franco Momigliano", Bureau of Research in Innovation, Complexity and Knowledge, Collegio 202001, University of Turin.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:techno:v:127:y:2023:i:c:s0166497223001372. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.sciencedirect.com/science/journal/01664972 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.