IDEAS home Printed from https://ideas.repec.org/a/inm/ormnsc/v50y2004i6p724-739.html
   My bibliography  Save this article

Long-Range Reserve Crew Manpower Planning

Author

Listed:
  • Milind G. Sohoni

    (School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0205)

  • Ellis L. Johnson

    (School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0205)

  • T. Glenn Bailey

    (Research, Modeling & Design, A3 Building, 9th Floor, Delta Technology, Inc., Atlanta, Georgia 30354-1801)

Abstract

Airlines are continually faced with the challenge of efficient utilization of their cockpit crew resources. In addition to regular flying crews, airlines maintain significant reserve staffing levels to meet contractual obligations and provide smooth daily operations. Most airlines also depend on voluntary and involuntary flying by regular crews to cover trips that fall out of work schedules due to conflicts and disruptions (open time trips). These open time trips, combined with expected levels of voluntary and involuntary flying, affect reserve staffing levels; airlines must plan crew staffing in advance to meet resulting training and new-hire requirements. Inefficient operational reserve utilization can further affect long-range crew staffing, resulting in higher training and new-hire costs. The proposed optimization strategy to estimate long-range crew staffing combines operational reserve utilization and premium operational costs due to voluntary and involuntary flying with long-range business needs.

Suggested Citation

  • Milind G. Sohoni & Ellis L. Johnson & T. Glenn Bailey, 2004. "Long-Range Reserve Crew Manpower Planning," Management Science, INFORMS, vol. 50(6), pages 724-739, June.
  • Handle: RePEc:inm:ormnsc:v:50:y:2004:i:6:p:724-739
    DOI: 10.1287/mnsc.1030.0141
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/mnsc.1030.0141
    Download Restriction: no

    File URL: https://libkey.io/10.1287/mnsc.1030.0141?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ladislav Lettovský & Ellis L. Johnson & George L. Nemhauser, 2000. "Airline Crew Recovery," Transportation Science, INFORMS, vol. 34(4), pages 337-348, November.
    2. Michel Gamache & François Soumis & Daniel Villeneuve & Jacques Desrosiers & Éric Gélinas, 1998. "The Preferential Bidding System at Air Canada," Transportation Science, INFORMS, vol. 32(3), pages 246-255, August.
    3. Cynthia Barnhart & Timothy S. Kniker & Manoj Lohatepanont, 2002. "Itinerary-Based Airline Fleet Assignment," Transportation Science, INFORMS, vol. 36(2), pages 199-217, May.
    4. Ranga Anbil & Eric Gelman & Bruce Patty & Rajan Tanga, 1991. "Recent Advances in Crew-Pairing Optimization at American Airlines," Interfaces, INFORMS, vol. 21(1), pages 62-74, February.
    5. Cynthia Barnhart & Natashia L. Boland & Lloyd W. Clarke & Ellis L. Johnson & George L. Nemhauser & Rajesh G. Shenoi, 1998. "Flight String Models for Aircraft Fleeting and Routing," Transportation Science, INFORMS, vol. 32(3), pages 208-220, August.
    6. Jeffrey E. Dillon & Spyros Kontogiorgis, 1999. "US Airways Optimizes the Scheduling of Reserve Flight Crews," Interfaces, INFORMS, vol. 29(5), pages 123-131, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yılmaz, Seren Bilge & Yücel, Eda, 2021. "Optimizing onboard catering loading locations and plans for airlines," Omega, Elsevier, vol. 99(C).
    2. Wen, Xin & Chung, Sai-Ho & Ji, Ping & Sheu, Jiuh-Biing, 2022. "Individual scheduling approach for multi-class airline cabin crew with manpower requirement heterogeneity," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 163(C).
    3. Seyed Morteza Emadi & Bradley R. Staats, 2020. "A Structural Estimation Approach to Study Agent Attrition," Management Science, INFORMS, vol. 66(9), pages 4071-4095, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cynthia Barnhart & Peter Belobaba & Amedeo R. Odoni, 2003. "Applications of Operations Research in the Air Transport Industry," Transportation Science, INFORMS, vol. 37(4), pages 368-391, November.
    2. Jay M. Rosenberger & Andrew J. Schaefer & David Goldsman & Ellis L. Johnson & Anton J. Kleywegt & George L. Nemhauser, 2002. "A Stochastic Model of Airline Operations," Transportation Science, INFORMS, vol. 36(4), pages 357-377, November.
    3. Milind G. Sohoni & T. Glenn Bailey & Kristi G. Martin & Helen Carter & Ellis L. Johnson, 2003. "Delta Optimizes Continuing-Qualification-Training Schedules for Pilots," Interfaces, INFORMS, vol. 33(5), pages 57-70, October.
    4. Nissen, Rüdiger & Haase, Knut, 2004. "Duty-period-based network model for airline crew rescheduling," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 581, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    5. Okan Örsan Özener & Melda Örmeci Matoğlu & Güneş Erdoğan & Mohamed Haouari & Hasan Sözer, 2017. "Solving a large-scale integrated fleet assignment and crew pairing problem," Annals of Operations Research, Springer, vol. 253(1), pages 477-500, June.
    6. Maenhout, Broos & Vanhoucke, Mario, 2010. "A hybrid scatter search heuristic for personalized crew rostering in the airline industry," European Journal of Operational Research, Elsevier, vol. 206(1), pages 155-167, October.
    7. Belanger, Nicolas & Desaulniers, Guy & Soumis, Francois & Desrosiers, Jacques, 2006. "Periodic airline fleet assignment with time windows, spacing constraints, and time dependent revenues," European Journal of Operational Research, Elsevier, vol. 175(3), pages 1754-1766, December.
    8. Stephen J. Maher, 2016. "Solving the Integrated Airline Recovery Problem Using Column-and-Row Generation," Transportation Science, INFORMS, vol. 50(1), pages 216-239, February.
    9. Gang Yu & Michael Argüello & Gao Song & Sandra M. McCowan & Anna White, 2003. "A New Era for Crew Recovery at Continental Airlines," Interfaces, INFORMS, vol. 33(1), pages 5-22, February.
    10. Andrew G. Clark & Susan Cholette & Ozgur Ozluk, 2011. "UCSF Increases Consumer Value Through Optimal Vendor-Show Scheduling," Interfaces, INFORMS, vol. 41(4), pages 327-337, August.
    11. Ovidiu Listes & Rommert Dekker, 2005. "A Scenario Aggregation–Based Approach for Determining a Robust Airline Fleet Composition for Dynamic Capacity Allocation," Transportation Science, INFORMS, vol. 39(3), pages 367-382, August.
    12. Jon D. Petersen & Gustaf Sölveling & John-Paul Clarke & Ellis L. Johnson & Sergey Shebalov, 2012. "An Optimization Approach to Airline Integrated Recovery," Transportation Science, INFORMS, vol. 46(4), pages 482-500, November.
    13. Sherali, Hanif D. & Bish, Ebru K. & Zhu, Xiaomei, 2006. "Airline fleet assignment concepts, models, and algorithms," European Journal of Operational Research, Elsevier, vol. 172(1), pages 1-30, July.
    14. Sarac, Abdulkadir & Batta, Rajan & Rump, Christopher M., 2006. "A branch-and-price approach for operational aircraft maintenance routing," European Journal of Operational Research, Elsevier, vol. 175(3), pages 1850-1869, December.
    15. Cynthia Barnhart & Amy Cohn, 2004. "Airline Schedule Planning: Accomplishments and Opportunities," Manufacturing & Service Operations Management, INFORMS, vol. 6(1), pages 3-22, November.
    16. Atoosa Kasirzadeh & Mohammed Saddoune & François Soumis, 2017. "Airline crew scheduling: models, algorithms, and data sets," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 6(2), pages 111-137, June.
    17. Pilla, Venkata L. & Rosenberger, Jay M. & Chen, Victoria & Engsuwan, Narakorn & Siddappa, Sheela, 2012. "A multivariate adaptive regression splines cutting plane approach for solving a two-stage stochastic programming fleet assignment model," European Journal of Operational Research, Elsevier, vol. 216(1), pages 162-171.
    18. Marco E. Lübbecke & Jacques Desrosiers, 2005. "Selected Topics in Column Generation," Operations Research, INFORMS, vol. 53(6), pages 1007-1023, December.
    19. Hanif D. Sherali & Ebru K. Bish & Xiaomei Zhu, 2005. "Polyhedral Analysis and Algorithms for a Demand-Driven Refleeting Model for Aircraft Assignment," Transportation Science, INFORMS, vol. 39(3), pages 349-366, August.
    20. Cynthia Barnhart & Amr Farahat & Manoj Lohatepanont, 2009. "Airline Fleet Assignment with Enhanced Revenue Modeling," Operations Research, INFORMS, vol. 57(1), pages 231-244, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormnsc:v:50:y:2004:i:6:p:724-739. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.