IDEAS home Printed from https://ideas.repec.org/a/inm/ormnsc/v48y2002i12p1613-1627.html
   My bibliography  Save this article

Perturbing Nonnormal Confidential Attributes: The Copula Approach

Author

Listed:
  • Rathindra Sarathy

    (Department of Management Science and Information Systems, Oklahoma State University, Stillwater, Oklahoma 74078-4011)

  • Krishnamurty Muralidhar

    (School of Management, Gatton College of Business and Economics, University of Kentucky, Lexington, Kentucky 40506-0034)

  • Rahul Parsa

    (College of Business and Public Administration, Drake University, Des Moines, Iowa 50311)

Abstract

Protecting confidential, numerical data in databases from disclosure is an important issue both for commercial organizations as well as data-gathering and disseminating organizations (such as the Census Bureau). Prior studies have shown that perturbation methods are effective in protecting such confidential data from snoopers. Perturbation methods have to provide legitimate users with accurate (unbiased) information, and also provide adequate security against disclosure of confidential information to snoopers. For databases described by nonnormal multivariate distributions, existing perturbation methods do not provide unbiased characteristics. In this study, we develop a copula-based perturbation method capable of maintaining the marginal distribution of perturbed attributes to be the same before and after perturbation. In addition, this method also preserves the rank order correlation between the confidential and nonconfidential attributes, thereby maintaining monotonic relationships between attributes. The method proposed in this study provides a high level of protection against inferential disclosure. An investigation of the new perturbation method for simulated databases shows that the method performs effectively. The methodology presented in this study represents a signicant step toward improving the practical applicability of data perturbation methods.

Suggested Citation

  • Rathindra Sarathy & Krishnamurty Muralidhar & Rahul Parsa, 2002. "Perturbing Nonnormal Confidential Attributes: The Copula Approach," Management Science, INFORMS, vol. 48(12), pages 1613-1627, December.
  • Handle: RePEc:inm:ormnsc:v:48:y:2002:i:12:p:1613-1627
    DOI: 10.1287/mnsc.48.12.1613.439
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/mnsc.48.12.1613.439
    Download Restriction: no

    File URL: https://libkey.io/10.1287/mnsc.48.12.1613.439?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Krishnamurty Muralidhar & Dinesh Batra & Peeter J. Kirs, 1995. "Accessibility, Security, and Accuracy in Statistical Databases: The Case for the Multiplicative Fixed Data Perturbation Approach," Management Science, INFORMS, vol. 41(9), pages 1549-1564, September.
    2. Krishnamurty Muralidhar & Rahul Parsa & Rathindra Sarathy, 1999. "A General Additive Data Perturbation Method for Database Security," Management Science, INFORMS, vol. 45(10), pages 1399-1415, October.
    3. Robert T. Clemen & Terence Reilly, 1999. "Correlations and Copulas for Decision and Risk Analysis," Management Science, INFORMS, vol. 45(2), pages 208-224, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mario Trottini, 2008. "Data disclosure limitation as a decision problem," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(1), pages 109-134.
    2. Woodcock, Simon D. & Benedetto, Gary, 2009. "Distribution-preserving statistical disclosure limitation," Computational Statistics & Data Analysis, Elsevier, vol. 53(12), pages 4228-4242, October.
    3. Syam Menon & Sumit Sarkar & Shibnath Mukherjee, 2005. "Maximizing Accuracy of Shared Databases when Concealing Sensitive Patterns," Information Systems Research, INFORMS, vol. 16(3), pages 256-270, September.
    4. Yi Qian & Hui Xie, 2013. "Drive More Effective Data-Based Innovations: Enhancing the Utility of Secure Databases," NBER Working Papers 19586, National Bureau of Economic Research, Inc.
    5. Yang, Jingping & Cheng, Shihong & Zhang, Lihong, 2006. "Bivariate copula decomposition in terms of comonotonicity, countermonotonicity and independence," Insurance: Mathematics and Economics, Elsevier, vol. 39(2), pages 267-284, October.
    6. Chu, Amanda M.Y. & Ip, Chun Yin & Lam, Benson S.Y. & So, Mike K.P., 2022. "Vine copula statistical disclosure control for mixed-type data," Computational Statistics & Data Analysis, Elsevier, vol. 176(C).
    7. Seokho Lee & Marc G. Genton & Reinaldo B. Arellano-Valle, 2010. "Perturbation of Numerical Confidential Data via Skew-t Distributions," Management Science, INFORMS, vol. 56(2), pages 318-333, February.
    8. Yi Qian & Hui Xie, 2015. "Drive More Effective Data-Based Innovations: Enhancing the Utility of Secure Databases," Management Science, INFORMS, vol. 61(3), pages 520-541, March.
    9. Haibing Lu & Jaideep Vaidya & Vijayalakshmi Atluri & Yingjiu Li, 2015. "Statistical Database Auditing Without Query Denial Threat," INFORMS Journal on Computing, INFORMS, vol. 27(1), pages 20-34, February.
    10. Amanda M. Y. Chu & Benson S. Y. Lam & Agnes Tiwari & Mike K. P. So, 2019. "An Empirical Study of Applying Statistical Disclosure Control Methods to Public Health Research," IJERPH, MDPI, vol. 16(22), pages 1-17, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Seokho Lee & Marc G. Genton & Reinaldo B. Arellano-Valle, 2010. "Perturbation of Numerical Confidential Data via Skew-t Distributions," Management Science, INFORMS, vol. 56(2), pages 318-333, February.
    2. Rathindra Sarathy & Krishnamurty Muralidhar, 2002. "The Security of Confidential Numerical Data in Databases," Information Systems Research, INFORMS, vol. 13(4), pages 389-403, December.
    3. Yi Qian & Hui Xie, 2013. "Drive More Effective Data-Based Innovations: Enhancing the Utility of Secure Databases," NBER Working Papers 19586, National Bureau of Economic Research, Inc.
    4. Haibing Lu & Jaideep Vaidya & Vijayalakshmi Atluri & Yingjiu Li, 2015. "Statistical Database Auditing Without Query Denial Threat," INFORMS Journal on Computing, INFORMS, vol. 27(1), pages 20-34, February.
    5. Manuel A. Nunez & Robert S. Garfinkel & Ram D. Gopal, 2007. "Stochastic Protection of Confidential Information in Databases: A Hybrid of Data Perturbation and Query Restriction," Operations Research, INFORMS, vol. 55(5), pages 890-908, October.
    6. Heng Xu & Nan Zhang, 2022. "Implications of Data Anonymization on the Statistical Evidence of Disparity," Management Science, INFORMS, vol. 68(4), pages 2600-2618, April.
    7. Chu, Amanda M.Y. & Ip, Chun Yin & Lam, Benson S.Y. & So, Mike K.P., 2022. "Vine copula statistical disclosure control for mixed-type data," Computational Statistics & Data Analysis, Elsevier, vol. 176(C).
    8. Krishnamurty Muralidhar & Rathindra Sarathy, 2006. "Data Shuffling--A New Masking Approach for Numerical Data," Management Science, INFORMS, vol. 52(5), pages 658-670, May.
    9. Yi Qian & Hui Xie, 2015. "Drive More Effective Data-Based Innovations: Enhancing the Utility of Secure Databases," Management Science, INFORMS, vol. 61(3), pages 520-541, March.
    10. A. E. Ades & Karl Claxton & Mark Sculpher, 2006. "Evidence synthesis, parameter correlation and probabilistic sensitivity analysis," Health Economics, John Wiley & Sons, Ltd., vol. 15(4), pages 373-381, April.
    11. Ho-Yin Mak & Zuo-Jun Max Shen, 2014. "Pooling and Dependence of Demand and Yield in Multiple-Location Inventory Systems," Manufacturing & Service Operations Management, INFORMS, vol. 16(2), pages 263-269, May.
    12. Plischke, Elmar & Borgonovo, Emanuele, 2019. "Copula theory and probabilistic sensitivity analysis: Is there a connection?," European Journal of Operational Research, Elsevier, vol. 277(3), pages 1046-1059.
    13. Alexei Alexandrov & Özlem Bedre-Defolie, 2014. "The Equivalence of Bundling and Advance Sales," Marketing Science, INFORMS, vol. 33(2), pages 259-272, March.
    14. P. Daniel Wright & Matthew J. Liberatore & Robert L. Nydick, 2006. "A Survey of Operations Research Models and Applications in Homeland Security," Interfaces, INFORMS, vol. 36(6), pages 514-529, December.
    15. Tianyang Wang & James S. Dyer & Warren J. Hahn, 2017. "Sensitivity analysis of decision making under dependent uncertainties using copulas," EURO Journal on Decision Processes, Springer;EURO - The Association of European Operational Research Societies, vol. 5(1), pages 117-139, November.
    16. Charles J. Corbett & Kumar Rajaram, 2006. "A Generalization of the Inventory Pooling Effect to Nonnormal Dependent Demand," Manufacturing & Service Operations Management, INFORMS, vol. 8(4), pages 351-358, August.
    17. Benoumechiara Nazih & Bousquet Nicolas & Michel Bertrand & Saint-Pierre Philippe, 2020. "Detecting and modeling critical dependence structures between random inputs of computer models," Dependence Modeling, De Gruyter, vol. 8(1), pages 263-297, January.
    18. Donald L. Keefer & Craig W. Kirkwood & James L. Corner, 2004. "Perspective on Decision Analysis Applications, 1990–2001," Decision Analysis, INFORMS, vol. 1(1), pages 4-22, March.
    19. Benoumechiara Nazih & Bousquet Nicolas & Michel Bertrand & Saint-Pierre Philippe, 2020. "Detecting and modeling critical dependence structures between random inputs of computer models," Dependence Modeling, De Gruyter, vol. 8(1), pages 263-297, January.
    20. Trottini, Mario & Muralidhar, Krish & Sarathy, Rathindra, 2011. "Maintaining tail dependence in data shuffling using t copula," Statistics & Probability Letters, Elsevier, vol. 81(3), pages 420-428, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormnsc:v:48:y:2002:i:12:p:1613-1627. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.