IDEAS home Printed from https://ideas.repec.org/a/inm/ormksc/v20y2001i4p442-456.html
   My bibliography  Save this article

Endogeneity and Heterogeneity in a Probit Demand Model: Estimation Using Aggregate Data

Author

Listed:
  • Pradeep K. Chintagunta

    (Graduate School of Business, University of Chicago, 1101 East 58th Street, Chicago, Illinois 60637)

Abstract

Two issues that have become increasingly important while estimating the parameters of aggregate demand functions to study firm behavior are the of marketing activities (typically, price) and across consumers in the market under consideration. Ignoring these issues in the estimation of the demand function parameters can lead to biased and inconsistent estimates for the effects of marketing activities. Endogeneity and heterogeneity have achieved prominence in large measure because of the increasing popularity of logit models to characterize demand functions using data. The logit model accounts for purchase incidence and brand choice by including a “no-purchase” alternative in the consumer's choice set. This allows for category sales to change as a function of the marketing activities of brands in the category. There are three issues with using the logit model with the no-purchase option to characterize demand when studying competitive interactions among firms. (1) The marketing literature dealing with brand choice behavior at the consumer level has found that the IIA restriction is not appropriate, as each brand in the choice set is more similar to some brands than it is to others. (2) Studies have found that the purchase incidence decision is distinct from the brand choice decision. Hence, it may not be appropriate to model the no-purchase decision as just another alternative in the choice set with the IIA restriction holding across all brands and the no-purchase option. (3) Even if the distinction between the purchase incidence and brand choice decisions is accounted for via, for example, a nested logit specification, accounting for the purchase incidence decision with aggregate data requires assumptions for computing the share of the no-purchase alternative which is otherwise unobserved. In this paper, we propose a probit model as an alternative to the logit model to specify the aggregate demand functions of firms competing in oligopoly markets. The probit model avoids the IIA property that affects the logit model at the individual consumer level. Furthermore, the probit model can naturally account for the distinction between the purchase incidence and brand choice decisions due to the general covariance structure assumed for the utilities of the alternatives. We demonstrate how the parameters of the proposed model can be estimated using aggregate time series data from a product market. In the estimation, we account for the endogeneity of marketing variables as well as for heterogeneity across consumers. Our results indicate that both endogeneity as well as heterogeneity need to be accounted for even after allowing for a non-IIA specification at the individual consumer level. Specific to our data, we also find that ignoring endogeneity has a bigger impact on the estimated price elasticities than ignoring the effects of heterogeneity. A comparison of the elasticities obtained from the probit model with those from the corresponding logit specification indicates that the of elasticities obtained from the probit model across brands is larger than that obtained from the logit. The results have implications for issues such as firm-level pricing. In addition to specifying a probit model and providing comparisons with the logit model, the paper also addresses the third issue raised above. We propose a simple alternative to the purchase incidence/brand choice specification by decomposing the demand for a brand into a category demand equation and a conditional brand choice share equation. We provide a comparison of results from this specification to those from the specification that includes the no-purchase alternative and find that estimated elasticities are sensitive to the specification used. We also estimate the demand function parameters using a traditional specification such as the double-logarithmic model. Here, we find that the estimated elasticities could be signed in such a manner as to be not useful for firm-level pricing decisions. One of the key limitations of the proposed model is that while it accounts for the purchase incidence and brand choice decisions of households, it does not account for differences across consumers in their purchase quantities. The model and analysis are best suited for product categories in which consumers typically make single-unit purchases. Another limitation is more practical in nature. While recent advances have been made in computing probit probabilities, it could nevertheless be a challenge to do so when the number of alternatives is large.

Suggested Citation

  • Pradeep K. Chintagunta, 2001. "Endogeneity and Heterogeneity in a Probit Demand Model: Estimation Using Aggregate Data," Marketing Science, INFORMS, vol. 20(4), pages 442-456, December.
  • Handle: RePEc:inm:ormksc:v:20:y:2001:i:4:p:442-456
    DOI: 10.1287/mksc.20.4.442.9751
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/mksc.20.4.442.9751
    Download Restriction: no

    File URL: https://libkey.io/10.1287/mksc.20.4.442.9751?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. K. Sudhir, 2001. "Competitive Pricing Behavior in the Auto Market: A Structural Analysis," Marketing Science, INFORMS, vol. 20(1), pages 42-60, January.
    2. Kim, Byung-Do & Blattberg, Robert C & Rossi, Peter E, 1995. "Modeling the Distribution of Price Sensitivity and Implications for Optimal Retail Pricing," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(3), pages 291-303, July.
    3. Nevo, Aviv, 2001. "Measuring Market Power in the Ready-to-Eat Cereal Industry," Econometrica, Econometric Society, vol. 69(2), pages 307-342, March.
    4. Berry, Steven & Levinsohn, James & Pakes, Ariel, 1995. "Automobile Prices in Market Equilibrium," Econometrica, Econometric Society, vol. 63(4), pages 841-890, July.
    5. Jain, Dipak C & Vilcassim, Naufel J & Chintagunta, Pradeep K, 1994. "A Random-Coefficients Logit Brand-Choice Model Applied to Panel Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 12(3), pages 317-328, July.
    6. K. Sudhir, 2001. "Competitive Pricing Behavior in the US Auto Market: A Structural Analysis," Yale School of Management Working Papers ysm228, Yale School of Management.
    7. David Besanko & Sachin Gupta & Dipak Jain, 1998. "Logit Demand Estimation Under Competitive Pricing Behavior: An Equilibrium Framework," Management Science, INFORMS, vol. 44(11-Part-1), pages 1533-1547, November.
    8. Vrinda Kadiyali, 1996. "Entry, Its Deterrence, and Its Accommodation: A Study of the U.S. Photographic Film Industry," RAND Journal of Economics, The RAND Corporation, vol. 27(3), pages 452-478, Autumn.
    9. Hajivassiliou, Vassilis & McFadden, Daniel & Ruud, Paul, 1996. "Simulation of multivariate normal rectangle probabilities and their derivatives theoretical and computational results," Journal of Econometrics, Elsevier, vol. 72(1-2), pages 85-134.
    10. J. Miguel Villas-Boas & Russell S. Winer, 1999. "Endogeneity in Brand Choice Models," Management Science, INFORMS, vol. 45(10), pages 1324-1338, October.
    11. Pradeep K. Chintagunta, 1993. "Investigating Purchase Incidence, Brand Choice and Purchase Quantity Decisions of Households," Marketing Science, INFORMS, vol. 12(2), pages 184-208.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dongling Huang & Christian Rojas & Frank Bass, 2008. "What Happens When Demand Is Estimated With A Misspecified Model?," Journal of Industrial Economics, Wiley Blackwell, vol. 56(4), pages 809-839, December.
    2. Pradeep Chintagunta & Jean-Pierre Dubé & Vishal Singh, 2003. "Balancing Profitability and Customer Welfare in a Supermarket Chain," Quantitative Marketing and Economics (QME), Springer, vol. 1(1), pages 111-147, March.
    3. Jaehwan Kim & Greg M. Allenby & Peter E. Rossi, 2002. "Modeling Consumer Demand for Variety," Marketing Science, INFORMS, vol. 21(3), pages 229-250, December.
    4. K. Sudhir, 2001. "Structural Analysis of Manufacturer Pricing in the Presence of a Strategic Retailer," Marketing Science, INFORMS, vol. 20(3), pages 244-264, October.
    5. K. Sudhir & Pradeep K. Chintagunta & Vrinda Kadiyali, 2005. "Time-Varying Competition," Marketing Science, INFORMS, vol. 24(1), pages 96-109, September.
    6. Jorge Silva-Risso & Irina Ionova, 2008. "—A Nested Logit Model of Product and Transaction-Type Choice for Planning Automakers' Pricing and Promotions," Marketing Science, INFORMS, vol. 27(4), pages 545-566, 07-08.
    7. Tomohiro Ando, 2018. "Merchant selection and pricing strategy for a platform firm in the online group buying market," Annals of Operations Research, Springer, vol. 263(1), pages 209-230, April.
    8. Sungho Park & Sachin Gupta, 2012. "Handling Endogenous Regressors by Joint Estimation Using Copulas," Marketing Science, INFORMS, vol. 31(4), pages 567-586, July.
    9. Doug J. Chung, 2013. "The Dynamic Advertising Effect of Collegiate Athletics," Marketing Science, INFORMS, vol. 32(5), pages 679-698, September.
    10. David Besanko & Jean-Pierre Dubé & Sachin Gupta, 2003. "Competitive Price Discrimination Strategies in a Vertical Channel Using Aggregate Retail Data," Management Science, INFORMS, vol. 49(9), pages 1121-1138, September.
    11. S. Sriram & Pradeep K. Chintagunta & Ramya Neelamegham, 2006. "Effects of Brand Preference, Product Attributes, and Marketing Mix Variables in Technology Product Markets," Marketing Science, INFORMS, vol. 25(5), pages 440-456, September.
    12. Satoshi Myojo & Yuichiro Kanazawa, 2010. "On Asymptotic Properties of the Parameters of Differentiated Product Demand and Supply Systems When Demographically-Categorized Purchasing Pattern Data are Available," Discussion Papers 1009, Graduate School of Economics, Kobe University.
    13. Sanjog Misra, 2005. "Generalized Reverse Discrete Choice Models," Quantitative Marketing and Economics (QME), Springer, vol. 3(2), pages 175-200, June.
    14. Agarwal, Manoj K. & Ma, Zecong & Park, Chang Hee & Zheng, Yilong, 2022. "The impact of a manufacturer’s financial liquidity on its market strategies and pricing and promotion decisions in retail grocery markets," Journal of Business Research, Elsevier, vol. 142(C), pages 844-857.
    15. Sergio Meza & K. Sudhir, 2010. "Do private labels increase retailer bargaining power?," Quantitative Marketing and Economics (QME), Springer, vol. 8(3), pages 333-363, September.
    16. Jackie Y. Luan & K. Sudhir, 2022. "Optimal Inter-Release Time between Sequentially Released Products," Cowles Foundation Discussion Papers 2325, Cowles Foundation for Research in Economics, Yale University.
    17. Lu, Zhentong & Zhang, Sisi & Hong, Jian, 2021. "Examining the impact of home purchase restrictions on China's housing market," China Economic Review, Elsevier, vol. 67(C).
    18. Jiang, Renna & Manchanda, Puneet & Rossi, Peter E., 2009. "Bayesian analysis of random coefficient logit models using aggregate data," Journal of Econometrics, Elsevier, vol. 149(2), pages 136-148, April.
    19. Baltas, George & Doyle, Peter, 2001. "Random utility models in marketing research: a survey," Journal of Business Research, Elsevier, vol. 51(2), pages 115-125, February.
    20. Yonezawa, Koichi & Richards, Timothy J., 2016. "Competitive Package Size Decisions," Journal of Retailing, Elsevier, vol. 92(4), pages 445-469.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormksc:v:20:y:2001:i:4:p:442-456. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.