IDEAS home Printed from https://ideas.repec.org/a/inm/orinte/v48y2018i6p596-600.html
   My bibliography  Save this article

Practice Summary: Deriving the Optimal Location of a Biorefinery in Northern Spain

Author

Listed:
  • Adrian Serrano-Hernandez

    (Institute of Smart Cities, Public University of Navarre, 31006 Pamplona, Navarra, Spain)

  • Jesus M. Pintor

    (Institute of Smart Cities, Public University of Navarre, 31006 Pamplona, Navarra, Spain)

  • Javier Faulin

    (Institute of Smart Cities, Public University of Navarre, 31006 Pamplona, Navarra, Spain)

  • Christian Fikar

    (Institute of Production and Logistics, University of Natural Resources and Life Sciences, 1180 Vienna, Austria)

  • Irantzu Alegria

    (National Renewable Energy Centre (CENER), 31621 Sarriguren, Navarra, Spain)

  • Pablo Astiz

    (ASTRANSLER, 31620 Huarte, Navarra, Spain)

Abstract

This work highlights how mathematical programming modeling supported the decision-making process of locating a biorefinery in Northern Spain. Through close cooperation with relevant stakeholders, we considered a wide range of influencing factors such as supply and storage strategies, transport infrastructure, and individual characteristics of biomass products. The findings of this study provided decision makers with a ranking of potential locations and highlighted the importance of facilitating intermediate storage points for supplying the biorefinery. Currently, the Government of Navarre (Spain) is evaluating the results for its economic sustainability and plans to make the final decision on one of the top-ranked locations in the near future.

Suggested Citation

  • Adrian Serrano-Hernandez & Jesus M. Pintor & Javier Faulin & Christian Fikar & Irantzu Alegria & Pablo Astiz, 2018. "Practice Summary: Deriving the Optimal Location of a Biorefinery in Northern Spain," Interfaces, INFORMS, vol. 48(6), pages 596-600, November.
  • Handle: RePEc:inm:orinte:v:48:y:2018:i:6:p:596-600
    DOI: 10.1287/inte.2018.0953
    as

    Download full text from publisher

    File URL: https://doi.org/10.1287/inte.2018.0953
    Download Restriction: no

    File URL: https://libkey.io/10.1287/inte.2018.0953?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ubeda, S. & Arcelus, F.J. & Faulin, J., 2011. "Green logistics at Eroski: A case study," International Journal of Production Economics, Elsevier, vol. 131(1), pages 44-51, May.
    2. Melo, M.T. & Nickel, S. & Saldanha-da-Gama, F., 2009. "Facility location and supply chain management - A review," European Journal of Operational Research, Elsevier, vol. 196(2), pages 401-412, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Becker, Tristan & Lier, Stefan & Werners, Brigitte, 2019. "Value of modular production concepts in future chemical industry production networks," European Journal of Operational Research, Elsevier, vol. 276(3), pages 957-970.
    2. Venn, Tyron J. & Dorries, Jack W. & McGavin, Robert L., 2021. "A mathematical model to support investment in veneer and LVL manufacturing in subtropical eastern Australia," Forest Policy and Economics, Elsevier, vol. 128(C).
    3. Kumar, V.N.S.A. & Kumar, V. & Brady, M. & Garza-Reyes, Jose Arturo & Simpson, M., 2017. "Resolving forward-reverse logistics multi-period model using evolutionary algorithms," International Journal of Production Economics, Elsevier, vol. 183(PB), pages 458-469.
    4. Hashem Omrani & Farzane Adabi & Narges Adabi, 2017. "Designing an efficient supply chain network with uncertain data: a robust optimization—data envelopment analysis approach," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(7), pages 816-828, July.
    5. Bartosz Sawik, 2024. "Optimizing Last-Mile Delivery: A Multi-Criteria Approach with Automated Smart Lockers, Capillary Distribution and Crowdshipping," Logistics, MDPI, vol. 8(2), pages 1-30, May.
    6. Sauvey, Christophe & Melo, Teresa & Correia, Isabel, 2019. "Two-phase heuristics for a multi-period capacitated facility location problem with service-differentiated customers," Technical Reports on Logistics of the Saarland Business School 16, Saarland University of Applied Sciences (htw saar), Saarland Business School.
    7. Guerrero, W.J. & Prodhon, C. & Velasco, N. & Amaya, C.A., 2013. "Hybrid heuristic for the inventory location-routing problem with deterministic demand," International Journal of Production Economics, Elsevier, vol. 146(1), pages 359-370.
    8. M. Fattahi & M. Mahootchi & S. M. Moattar Husseini, 2016. "Integrated strategic and tactical supply chain planning with price-sensitive demands," Annals of Operations Research, Springer, vol. 242(2), pages 423-456, July.
    9. Hasani, Aliakbar & Khosrojerdi, Amirhossein, 2016. "Robust global supply chain network design under disruption and uncertainty considering resilience strategies: A parallel memetic algorithm for a real-life case study," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 87(C), pages 20-52.
    10. Sophie Masson & Romain Petiot, 2012. "Territorial Attractiveness, Logistical Facilities And Sustainable Development [Attractivité territoriale, infrastructures logistiques et développement durable]," Post-Print hal-04153018, HAL.
    11. Xuejie Bai & Yankui Liu, 2016. "Robust optimization of supply chain network design in fuzzy decision system," Journal of Intelligent Manufacturing, Springer, vol. 27(6), pages 1131-1149, December.
    12. Longinidis, Pantelis & Georgiadis, Michael C., 2014. "Integration of sale and leaseback in the optimal design of supply chain networks," Omega, Elsevier, vol. 47(C), pages 73-89.
    13. Ortiz-Astorquiza, Camilo & Contreras, Ivan & Laporte, Gilbert, 2018. "Multi-level facility location problems," European Journal of Operational Research, Elsevier, vol. 267(3), pages 791-805.
    14. Rodolfo Mendoza-Gómez & Roger Z. Ríos-Mercado & Karla B. Valenzuela-Ocaña, 2019. "An Efficient Decision-Making Approach for the Planning of Diagnostic Services in a Segmented Healthcare System," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 18(05), pages 1631-1665, September.
    15. Mallidis, I. & Vlachos, D. & Dekker, R., 2010. "Greening Supply Chains: Impact on Cost and Design," Econometric Institute Research Papers EI 2010-39a, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    16. Correia, Isabel & Melo, Teresa & Saldanha-da-Gama, Francisco, 2012. "Comparing classical performance measures for a multi-period, two-echelon supply chain network design problem with sizing decisions," Technical Reports on Logistics of the Saarland Business School 1, Saarland University of Applied Sciences (htw saar), Saarland Business School.
    17. Holzapfel, Andreas & Potoczki, Tobias & Kuhn, Heinrich, 2023. "Designing the breadth and depth of distribution networks in the retail trade," International Journal of Production Economics, Elsevier, vol. 257(C).
    18. Morris A. Cohen & Shiliang Cui & Ricardo Ernst & Arnd Huchzermeier & Panos Kouvelis & Hau L. Lee & Hirofumi Matsuo & Marc Steuber & Andy A. Tsay, 2018. "OM Forum—Benchmarking Global Production Sourcing Decisions: Where and Why Firms Offshore and Reshore," Manufacturing & Service Operations Management, INFORMS, vol. 20(3), pages 389-402, July.
    19. Cortés, Pablo & Muñuzuri, Jesús & Guadix, José & Onieva, Luis, 2013. "Optimal algorithm for the demand routing problem in multicommodity flow distribution networks with diversification constraints and concave costs," International Journal of Production Economics, Elsevier, vol. 146(1), pages 313-324.
    20. Sabet, Ehsan & Yazdani, Baback & Kian, Ramez & Galanakis, Kostas, 2020. "A strategic and global manufacturing capacity management optimisation model: A Scenario-based multi-stage stochastic programming approach," Omega, Elsevier, vol. 93(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:orinte:v:48:y:2018:i:6:p:596-600. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.