IDEAS home Printed from https://ideas.repec.org/a/inm/orinte/v38y2008i5p410-416.html
   My bibliography  Save this article

Book Reviews

Author

Listed:
  • Benjamin Lev

    (School of Management, FCS, The University of Michigan--Dearborn, Dearborn, Michigan 48128-1491)

Abstract

In “Book Reviews,” we review an extensive and diverse range of books. They cover theory and applications in operations research, statistics, management science, econometrics, mathematics, computers, and information systems. In addition, we include books in other fields that emphasize technical applications. However, we do not review software. To submit a book for review, please send it to me at the above address. Although we cannot review all books because of space limitations, we do list all books that we receive. We commission all book reviews and do not accept unsolicited reviews. To become a reviewer, please send me your name, address, and specific areas of expertise. We encourage readers to suggest books for review or to ask publishers to send copies of such books. The authors or editors of books we review in this issue are Nagraj Balakrishnan, Barry Render, Ralph M. Stair Jr., Balbir S. Dhillon, and Rolf G. Poluha.

Suggested Citation

  • Benjamin Lev, 2008. "Book Reviews," Interfaces, INFORMS, vol. 38(5), pages 410-416, October.
  • Handle: RePEc:inm:orinte:v:38:y:2008:i:5:p:410-416
    DOI: 10.1287/inte.1080.0357
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/inte.1080.0357
    Download Restriction: no

    File URL: https://libkey.io/10.1287/inte.1080.0357?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Regina S. Burachik & Alfredo N. Iusem, 2008. "Enlargements of Monotone Operators," Springer Optimization and Its Applications, in: Set-Valued Mappings and Enlargements of Monotone Operators, chapter 0, pages 161-220, Springer.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Suthep Suantai & Kunrada Kankam & Prasit Cholamjiak, 2021. "A Projected Forward-Backward Algorithm for Constrained Minimization with Applications to Image Inpainting," Mathematics, MDPI, vol. 9(8), pages 1-14, April.
    2. Huynh Van Ngai & Nguyen Huu Tron & Michel Théra, 2014. "Metric Regularity of the Sum of Multifunctions and Applications," Journal of Optimization Theory and Applications, Springer, vol. 160(2), pages 355-390, February.
    3. Dawan Chumpungam & Panitarn Sarnmeta & Suthep Suantai, 2021. "A New Forward–Backward Algorithm with Line Searchand Inertial Techniques for Convex Minimization Problems with Applications," Mathematics, MDPI, vol. 9(13), pages 1-20, July.
    4. Walaa M. Moursi & Lieven Vandenberghe, 2019. "Douglas–Rachford Splitting for the Sum of a Lipschitz Continuous and a Strongly Monotone Operator," Journal of Optimization Theory and Applications, Springer, vol. 183(1), pages 179-198, October.
    5. Sedi Bartz & Minh N. Dao & Hung M. Phan, 2022. "Conical averagedness and convergence analysis of fixed point algorithms," Journal of Global Optimization, Springer, vol. 82(2), pages 351-373, February.
    6. Bello Cruz, J.Y. & Iusem, A.N., 2015. "Full convergence of an approximate projection method for nonsmooth variational inequalities," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 114(C), pages 2-13.
    7. Regina S. Burachik & Minh N. Dao & Scott B. Lindstrom, 2021. "Generalized Bregman Envelopes and Proximity Operators," Journal of Optimization Theory and Applications, Springer, vol. 190(3), pages 744-778, September.
    8. C. H. Jeffrey Pang, 2011. "Generalized Differentiation with Positively Homogeneous Maps: Applications in Set-Valued Analysis and Metric Regularity," Mathematics of Operations Research, INFORMS, vol. 36(3), pages 377-397, August.
    9. Warunun Inthakon & Suthep Suantai & Panitarn Sarnmeta & Dawan Chumpungam, 2020. "A New Machine Learning Algorithm Based on Optimization Method for Regression and Classification Problems," Mathematics, MDPI, vol. 8(6), pages 1-17, June.
    10. Juan Pablo Luna & Claudia Sagastizábal & Mikhail Solodov, 2020. "A class of Benders decomposition methods for variational inequalities," Computational Optimization and Applications, Springer, vol. 76(3), pages 935-959, July.
    11. Heinz H. Bauschke & Warren L. Hare & Walaa M. Moursi, 2016. "On the Range of the Douglas–Rachford Operator," Mathematics of Operations Research, INFORMS, vol. 41(3), pages 884-897, August.
    12. Hsien-Chung Wu, 2018. "Near Fixed Point Theorems in Hyperspaces," Mathematics, MDPI, vol. 6(6), pages 1-15, May.
    13. Walaa M. Moursi, 2018. "The Forward–Backward Algorithm and the Normal Problem," Journal of Optimization Theory and Applications, Springer, vol. 176(3), pages 605-624, March.
    14. Dawan Chumpungam & Panitarn Sarnmeta & Suthep Suantai, 2022. "An Accelerated Convex Optimization Algorithm with Line Search and Applications in Machine Learning," Mathematics, MDPI, vol. 10(9), pages 1-20, April.
    15. Yunier Bello-Cruz & Guoyin Li & Tran T. A. Nghia, 2021. "On the Linear Convergence of Forward–Backward Splitting Method: Part I—Convergence Analysis," Journal of Optimization Theory and Applications, Springer, vol. 188(2), pages 378-401, February.
    16. Regina S. Burachik & Alfredo N. Iusem & Jefferson G. Melo, 2013. "An Inexact Modified Subgradient Algorithm for Primal-Dual Problems via Augmented Lagrangians," Journal of Optimization Theory and Applications, Springer, vol. 157(1), pages 108-131, April.
    17. L. C. Ceng & B. S. Mordukhovich & J. C. Yao, 2010. "Hybrid Approximate Proximal Method with Auxiliary Variational Inequality for Vector Optimization," Journal of Optimization Theory and Applications, Springer, vol. 146(2), pages 267-303, August.
    18. J. Bello Cruz & A. Iusem, 2010. "Convergence of direct methods for paramonotone variational inequalities," Computational Optimization and Applications, Springer, vol. 46(2), pages 247-263, June.
    19. Rubén López, 2013. "Variational convergence for vector-valued functions and its applications to convex multiobjective optimization," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 78(1), pages 1-34, August.
    20. Jonathan M. Borwein & Liangjin Yao, 2013. "Structure Theory for Maximally Monotone Operators with Points of Continuity," Journal of Optimization Theory and Applications, Springer, vol. 157(1), pages 1-24, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:orinte:v:38:y:2008:i:5:p:410-416. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.