IDEAS home Printed from https://ideas.repec.org/a/inm/orijoc/v36y2024i4p987-1005.html
   My bibliography  Save this article

A Neural Separation Algorithm for the Rounded Capacity Inequalities

Author

Listed:
  • Hyeonah Kim

    (Department of Industrial and Systems Engineering, KAIST, Daejeon 34141, Republic of Korea)

  • Jinkyoo Park

    (Department of Industrial and Systems Engineering, KAIST, Daejeon 34141, Republic of Korea; OMELET, Daejeon 34051, Republic of Korea)

  • Changhyun Kwon

    (Department of Industrial and Systems Engineering, KAIST, Daejeon 34141, Republic of Korea; OMELET, Daejeon 34051, Republic of Korea)

Abstract

The cutting plane method is a key technique for successful branch-and-cut and branch-price-and-cut algorithms that find the exact optimal solutions for various vehicle routing problems (VRPs). Among various cuts, the rounded capacity inequalities (RCIs) are the most fundamental. To generate RCIs, we need to solve the separation problem, whose exact solution takes a long time to obtain; therefore, heuristic methods are widely used. We design a learning-based separation heuristic algorithm with graph coarsening that learns the solutions of the exact separation problem with a graph neural network (GNN), which is trained with small instances of 50 to 100 customers. We embed our separation algorithm within the cutting plane method to find a lower bound for the capacitated VRP (CVRP) with up to 1,000 customers. We compare the performance of our approach with CVRPSEP, a popular separation software package for various cuts used in solving VRPs. Our computational results show that our approach finds better lower bounds than CVRPSEP for large-scale problems with 400 or more customers, whereas CVRPSEP shows strong competency for problems with less than 400 customers.

Suggested Citation

  • Hyeonah Kim & Jinkyoo Park & Changhyun Kwon, 2024. "A Neural Separation Algorithm for the Rounded Capacity Inequalities," INFORMS Journal on Computing, INFORMS, vol. 36(4), pages 987-1005, July.
  • Handle: RePEc:inm:orijoc:v:36:y:2024:i:4:p:987-1005
    DOI: 10.1287/ijoc.2022.0310
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/ijoc.2022.0310
    Download Restriction: no

    File URL: https://libkey.io/10.1287/ijoc.2022.0310?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. G. B. Dantzig & J. H. Ramser, 1959. "The Truck Dispatching Problem," Management Science, INFORMS, vol. 6(1), pages 80-91, October.
    2. Guy Desaulniers & Diego Pecin & Claudio Contardo, 2019. "Selective pricing in branch-price-and-cut algorithms for vehicle routing," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 8(2), pages 147-168, June.
    3. Kate A. Smith, 1999. "Neural Networks for Combinatorial Optimization: A Review of More Than a Decade of Research," INFORMS Journal on Computing, INFORMS, vol. 11(1), pages 15-34, February.
    4. Luciano Costa & Claudio Contardo & Guy Desaulniers, 2019. "Exact Branch-Price-and-Cut Algorithms for Vehicle Routing," Transportation Science, INFORMS, vol. 53(4), pages 946-985, July.
    5. Gilbert Laporte & Yves Nobert & Martin Desrochers, 1985. "Optimal Routing under Capacity and Distance Restrictions," Operations Research, INFORMS, vol. 33(5), pages 1050-1073, October.
    6. Augerat, P. & Belenguer, J. M. & Benavent, E. & Corberan, A. & Naddef, D., 1998. "Separating capacity constraints in the CVRP using tabu search," European Journal of Operational Research, Elsevier, vol. 106(2-3), pages 546-557, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Roberto Baldacci & Paolo Toth & Daniele Vigo, 2010. "Exact algorithms for routing problems under vehicle capacity constraints," Annals of Operations Research, Springer, vol. 175(1), pages 213-245, March.
    2. David Applegate & William Cook & Sanjeeb Dash & André Rohe, 2002. "Solution of a Min-Max Vehicle Routing Problem," INFORMS Journal on Computing, INFORMS, vol. 14(2), pages 132-143, May.
    3. Yang, Fei & Dai, Ying & Ma, Zu-Jun, 2020. "A cooperative rich vehicle routing problem in the last-mile logistics industry in rural areas," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 141(C).
    4. R. Baldacci & E. Hadjiconstantinou & A. Mingozzi, 2004. "An Exact Algorithm for the Capacitated Vehicle Routing Problem Based on a Two-Commodity Network Flow Formulation," Operations Research, INFORMS, vol. 52(5), pages 723-738, October.
    5. Martinhon, Carlos & Lucena, Abilio & Maculan, Nelson, 2004. "Stronger K-tree relaxations for the vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 158(1), pages 56-71, October.
    6. Luciano Costa & Claudio Contardo & Guy Desaulniers, 2019. "Exact Branch-Price-and-Cut Algorithms for Vehicle Routing," Transportation Science, INFORMS, vol. 53(4), pages 946-985, July.
    7. Shubhechyya Ghosal & Wolfram Wiesemann, 2020. "The Distributionally Robust Chance-Constrained Vehicle Routing Problem," Operations Research, INFORMS, vol. 68(3), pages 716-732, May.
    8. Liu, Tian & Luo, Zhixing & Qin, Hu & Lim, Andrew, 2018. "A branch-and-cut algorithm for the two-echelon capacitated vehicle routing problem with grouping constraints," European Journal of Operational Research, Elsevier, vol. 266(2), pages 487-497.
    9. Alexandre M. Florio & Nabil Absi & Dominique Feillet, 2021. "Routing Electric Vehicles on Congested Street Networks," Transportation Science, INFORMS, vol. 55(1), pages 238-256, 1-2.
    10. Gilbert Laporte, 2009. "Fifty Years of Vehicle Routing," Transportation Science, INFORMS, vol. 43(4), pages 408-416, November.
    11. Briseida Sarasola & Karl Doerner & Verena Schmid & Enrique Alba, 2016. "Variable neighborhood search for the stochastic and dynamic vehicle routing problem," Annals of Operations Research, Springer, vol. 236(2), pages 425-461, January.
    12. Berbotto, Leonardo & García, Sergio & Nogales, Francisco J., 2011. "A vehicle routing model with split delivery and stop nodes," DES - Working Papers. Statistics and Econometrics. WS ws110906, Universidad Carlos III de Madrid. Departamento de Estadística.
    13. Hoogendoorn, Y.N. & Dalmeijer, K., 2021. "Resource-robust valid inequalities for set covering and set partitioning models," Econometric Institute Research Papers EI 2020-08, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    14. Katrin Heßler & Stefan Irnich, 2023. "Partial Dominance in Branch-Price-and-Cut for the Basic Multicompartment Vehicle-Routing Problem," INFORMS Journal on Computing, INFORMS, vol. 35(1), pages 50-65, January.
    15. Shih-Che Lo, 2022. "A Particle Swarm Optimization Approach to Solve the Vehicle Routing Problem with Cross-Docking and Carbon Emissions Reduction in Logistics Management," Logistics, MDPI, vol. 6(3), pages 1-15, September.
    16. Iman, Niroomand & Khataie, Amir & Foomani, Matin, 2016. "Application of Vehicle Routing Optimization in Improving the Flow of Mail to a Processing Plant," 57th Transportation Research Forum (51st CTRF) Joint Conference, Toronto, Ontario, May 1-4, 2016 319313, Transportation Research Forum.
    17. Timo Hintsch & Stefan Irnich & Lone Kiilerich, 2021. "Branch-Price-and-Cut for the Soft-Clustered Capacitated Arc-Routing Problem," Transportation Science, INFORMS, vol. 55(3), pages 687-705, May.
    18. Schaumann, Sarah K. & Bergmann, Felix M. & Wagner, Stephan M. & Winkenbach, Matthias, 2023. "Route efficiency implications of time windows and vehicle capacities in first- and last-mile logistics," European Journal of Operational Research, Elsevier, vol. 311(1), pages 88-111.
    19. Briseida Sarasola & Karl F. Doerner & Verena Schmid & Enrique Alba, 2016. "Variable neighborhood search for the stochastic and dynamic vehicle routing problem," Annals of Operations Research, Springer, vol. 236(2), pages 425-461, January.
    20. Christian Tilk & Katharina Olkis & Stefan Irnich, 2021. "The last-mile vehicle routing problem with delivery options," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 43(4), pages 877-904, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:orijoc:v:36:y:2024:i:4:p:987-1005. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.