IDEAS home Printed from https://ideas.repec.org/a/inm/orijoc/v34y2022i4p2091-2105.html
   My bibliography  Save this article

Convex Maximization via Adjustable Robust Optimization

Author

Listed:
  • Aras Selvi

    (Imperial College Business School, Imperial College London, London SW7 2AZ, United Kingdom of Great Britain and Northern Ireland)

  • Aharon Ben-Tal

    (Faculty of Industrial Engineering and Management, Technion - Israel Institute of Technology, Haifa 3200003, Israel; Shenkar College, Ramat Gan 52526, Israel; Center of Economic and Business Research, Tilburg University, 5037 AB Tilburg, Netherlands)

  • Ruud Brekelmans

    (Department of Econometrics and Operations Research, Tilburg University, 5037 AB Tilburg, Netherlands)

  • Dick den Hertog

    (Faculty of Economics and Business, University of Amsterdam, 1012 WX Amsterdam, Netherlands)

Abstract

Maximizing a convex function over convex constraints is an NP-hard problem in general. We prove that such a problem can be reformulated as an adjustable robust optimization (ARO) problem in which each adjustable variable corresponds to a unique constraint of the original problem. We use ARO techniques to obtain approximate solutions to the convex maximization problem. In order to demonstrate the complete approximation scheme, we distinguish the cases in which we have just one nonlinear constraint and multiple linear constraints. Concerning the first case, we give three examples in which one can analytically eliminate the adjustable variable and approximately solve the resulting static robust optimization problem efficiently. More specifically, we show that the norm constrained log-sum-exp (geometric) maximization problem can be approximated by (convex) exponential cone optimization techniques. Concerning the second case of multiple linear constraints, the equivalent ARO problem can be represented as an adjustable robust linear optimization problem. Using linear decision rules then returns a safe approximation of the constraints. The resulting problem is a convex optimization problem, and solving this problem gives an upper bound on the global optimum value of the original problem. By using the optimal linear decision rule, we obtain a lower bound solution as well. We derive the approximation problems explicitly for quadratic maximization, geometric maximization, and sum-of-max-linear-terms maximization problems with multiple linear constraints. Numerical experiments show that, contrary to the state-of-the-art solvers, we can approximate large-scale problems swiftly with tight bounds. In several cases, we have equal upper and lower bounds, which concludes that we have global optimality guarantees in these cases. Summary of Contribution: Maximizing a convex function over a convex set is a hard optimization problem. We reformulate this problem as an optimization problem under uncertainty, which allows us to transfer the hardness of this problem from its nonconvexity to the uncertainty of the new problem. The equivalent uncertain optimization problem can be relaxed tightly by using adjustable robust optimization techniques. In addition to building a new bridge between convex maximization and robust optimization, this approach also gives us strong algorithms that improve the state-of-the-art optimization solvers both in solution time and quality for various convex maximization problems.

Suggested Citation

  • Aras Selvi & Aharon Ben-Tal & Ruud Brekelmans & Dick den Hertog, 2022. "Convex Maximization via Adjustable Robust Optimization," INFORMS Journal on Computing, INFORMS, vol. 34(4), pages 2091-2105, July.
  • Handle: RePEc:inm:orijoc:v:34:y:2022:i:4:p:2091-2105
    DOI: 10.1287/ijoc.2021.1134
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/ijoc.2021.1134
    Download Restriction: no

    File URL: https://libkey.io/10.1287/ijoc.2021.1134?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Amir Ardestani-Jaafari & Erick Delage, 2016. "Robust Optimization of Sums of Piecewise Linear Functions with Application to Inventory Problems," Operations Research, INFORMS, vol. 64(2), pages 474-494, April.
    2. Philip B. Zwart, 1974. "Global Maximization of a Convex Function with Linear Inequality Constraints," Operations Research, INFORMS, vol. 22(3), pages 602-609, June.
    3. Yanıkoğlu, İhsan & Gorissen, Bram L. & den Hertog, Dick, 2019. "A survey of adjustable robust optimization," European Journal of Operational Research, Elsevier, vol. 277(3), pages 799-813.
    4. R. Horst & N. V. Thoai, 1999. "DC Programming: Overview," Journal of Optimization Theory and Applications, Springer, vol. 103(1), pages 1-43, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jianzhe Zhen & Ahmadreza Marandi & Danique de Moor & Dick den Hertog & Lieven Vandenberghe, 2022. "Disjoint Bilinear Optimization: A Two-Stage Robust Optimization Perspective," INFORMS Journal on Computing, INFORMS, vol. 34(5), pages 2410-2427, September.
    2. Aharon Ben-Tal & Ernst Roos, 2022. "An Algorithm for Maximizing a Convex Function Based on Its Minimum," INFORMS Journal on Computing, INFORMS, vol. 34(6), pages 3200-3214, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marc Goerigk & Adam Kasperski & Paweł Zieliński, 2022. "Robust two-stage combinatorial optimization problems under convex second-stage cost uncertainty," Journal of Combinatorial Optimization, Springer, vol. 43(3), pages 497-527, April.
    2. T. D. Chuong & V. Jeyakumar & G. Li & D. Woolnough, 2021. "Exact SDP reformulations of adjustable robust linear programs with box uncertainties under separable quadratic decision rules via SOS representations of non-negativity," Journal of Global Optimization, Springer, vol. 81(4), pages 1095-1117, December.
    3. van Eekelen, Wouter, 2023. "Distributionally robust views on queues and related stochastic models," Other publications TiSEM 9b99fc05-9d68-48eb-ae8c-9, Tilburg University, School of Economics and Management.
    4. Xiong, Houbo & Zhou, Yue & Guo, Chuangxin & Ding, Yi & Luo, Fengji, 2023. "Multi-stage risk-based assessment for wind energy accommodation capability: A robust and non-anticipative method," Applied Energy, Elsevier, vol. 350(C).
    5. Roos, Ernst, 2021. "Robust approaches for optimization problems with convex uncertainty," Other publications TiSEM dd9e7b35-a770-4f8d-a85c-8, Tilburg University, School of Economics and Management.
    6. Xiong, Houbo & Yan, Mingyu & Guo, Chuangxin & Ding, Yi & Zhou, Yue, 2023. "DP based multi-stage ARO for coordinated scheduling of CSP and wind energy with tractable storage scheme: Tight formulation and solution technique," Applied Energy, Elsevier, vol. 333(C).
    7. Ning Zhang & Chang Fang, 2020. "Saddle point approximation approaches for two-stage robust optimization problems," Journal of Global Optimization, Springer, vol. 78(4), pages 651-670, December.
    8. Angelos Georghiou & Angelos Tsoukalas & Wolfram Wiesemann, 2020. "A Primal–Dual Lifting Scheme for Two-Stage Robust Optimization," Operations Research, INFORMS, vol. 68(2), pages 572-590, March.
    9. Filipe Rodrigues & Agostinho Agra & Cristina Requejo & Erick Delage, 2021. "Lagrangian Duality for Robust Problems with Decomposable Functions: The Case of a Robust Inventory Problem," INFORMS Journal on Computing, INFORMS, vol. 33(2), pages 685-705, May.
    10. Cambier, Adrien & Chardy, Matthieu & Figueiredo, Rosa & Ouorou, Adam & Poss, Michael, 2022. "Optimizing subscriber migrations for a telecommunication operator in uncertain context," European Journal of Operational Research, Elsevier, vol. 298(1), pages 308-321.
    11. Shota Takahashi & Mituhiro Fukuda & Mirai Tanaka, 2022. "New Bregman proximal type algorithms for solving DC optimization problems," Computational Optimization and Applications, Springer, vol. 83(3), pages 893-931, December.
    12. Xiangyu Cui & Xun Li & Duan Li & Yun Shi, 2014. "Time Consistent Behavior Portfolio Policy for Dynamic Mean-Variance Formulation," Papers 1408.6070, arXiv.org, revised Aug 2015.
    13. Baringo, Luis & Boffino, Luigi & Oggioni, Giorgia, 2020. "Robust expansion planning of a distribution system with electric vehicles, storage and renewable units," Applied Energy, Elsevier, vol. 265(C).
    14. Nadja Harms & Tim Hoheisel & Christian Kanzow, 2015. "On a Smooth Dual Gap Function for a Class of Player Convex Generalized Nash Equilibrium Problems," Journal of Optimization Theory and Applications, Springer, vol. 166(2), pages 659-685, August.
    15. Da Li & Shijie Zhang & Yunhan Xiao, 2020. "Interval Optimization-Based Optimal Design of Distributed Energy Resource Systems under Uncertainties," Energies, MDPI, vol. 13(13), pages 1-18, July.
    16. João Carlos O. Souza & Paulo Roberto Oliveira & Antoine Soubeyran, 2016. "Global convergence of a proximal linearized algorithm for difference of convex functions," Post-Print hal-01440298, HAL.
    17. Boglárka G.-Tóth & Kristóf Kovács, 2016. "Solving a Huff-like Stackelberg location problem on networks," Journal of Global Optimization, Springer, vol. 64(2), pages 233-247, February.
    18. David Simchi-Levi & Nikolaos Trichakis & Peter Yun Zhang, 2019. "Designing Response Supply Chain Against Bioattacks," Operations Research, INFORMS, vol. 67(5), pages 1246-1268, September.
    19. Hamed Mamani & Shima Nassiri & Michael R. Wagner, 2017. "Closed-Form Solutions for Robust Inventory Management," Management Science, INFORMS, vol. 63(5), pages 1625-1643, May.
    20. Rafael Blanquero & Emilio Carrizosa & Amaya Nogales-Gómez & Frank Plastria, 2014. "Single-facility huff location problems on networks," Annals of Operations Research, Springer, vol. 222(1), pages 175-195, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:orijoc:v:34:y:2022:i:4:p:2091-2105. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.