IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v313y2024i2p602-615.html
   My bibliography  Save this article

A study of distributionally robust mixed-integer programming with Wasserstein metric: on the value of incomplete data

Author

Listed:
  • Ketkov, Sergey S.

Abstract

This study addresses a class of linear mixed-integer programming (MILP) problems that involve uncertainty in the objective function parameters. The parameters are assumed to form a random vector, whose probability distribution can only be observed through a finite training data set. Unlike most of the related studies in the literature, we also consider uncertainty in the underlying data set. The data uncertainty is described by a set of linear constraints for each random sample, and the uncertainty in the distribution (for a fixed realization of data) is defined using a type-1 Wasserstein ball centered at the empirical distribution of the data. The overall problem is formulated as a three-level distributionally robust optimization (DRO) problem. First, we prove that the three-level problem admits a single-level MILP reformulation, if the class of loss functions is restricted to biaffine functions. Secondly, it turns out that for several particular forms of data uncertainty, the outlined problem can be solved reasonably fast by leveraging the nominal MILP problem. Finally, we conduct a computational study, where the out-of-sample performance of our model and computational complexity of the proposed MILP reformulation are explored numerically for several application domains.

Suggested Citation

  • Ketkov, Sergey S., 2024. "A study of distributionally robust mixed-integer programming with Wasserstein metric: on the value of incomplete data," European Journal of Operational Research, Elsevier, vol. 313(2), pages 602-615.
  • Handle: RePEc:eee:ejores:v:313:y:2024:i:2:p:602-615
    DOI: 10.1016/j.ejor.2023.10.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221723007932
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2023.10.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Aharon Ben-Tal & Dick den Hertog & Anja De Waegenaere & Bertrand Melenberg & Gijs Rennen, 2013. "Robust Solutions of Optimization Problems Affected by Uncertain Probabilities," Management Science, INFORMS, vol. 59(2), pages 341-357, April.
    2. Ren, Ke & Bidkhori, Hoda, 2023. "A study of data-driven distributionally robust optimization with incomplete joint data under finite support," European Journal of Operational Research, Elsevier, vol. 305(2), pages 754-765.
    3. Haolin Ruan & Zhi Chen & Chin Pang Ho, 2023. "Adjustable Distributionally Robust Optimization with Infinitely Constrained Ambiguity Sets," INFORMS Journal on Computing, INFORMS, vol. 35(5), pages 1002-1023, September.
    4. Meysam Cheramin & Jianqiang Cheng & Ruiwei Jiang & Kai Pan, 2022. "Computationally Efficient Approximations for Distributionally Robust Optimization Under Moment and Wasserstein Ambiguity," INFORMS Journal on Computing, INFORMS, vol. 34(3), pages 1768-1794, May.
    5. Erick Delage & Yinyu Ye, 2010. "Distributionally Robust Optimization Under Moment Uncertainty with Application to Data-Driven Problems," Operations Research, INFORMS, vol. 58(3), pages 595-612, June.
    6. Wolfram Wiesemann & Daniel Kuhn & Melvyn Sim, 2014. "Distributionally Robust Convex Optimization," Operations Research, INFORMS, vol. 62(6), pages 1358-1376, December.
    7. Jean-Yves Audibert & Sébastien Bubeck & Gábor Lugosi, 2014. "Regret in Online Combinatorial Optimization," Mathematics of Operations Research, INFORMS, vol. 39(1), pages 31-45, February.
    8. Wang, Zhuolin & You, Keyou & Song, Shiji & Zhang, Yuli, 2020. "Wasserstein distributionally robust shortest path problem," European Journal of Operational Research, Elsevier, vol. 284(1), pages 31-43.
    9. Ran Ji & Miguel A. Lejeune, 2021. "Data-driven distributionally robust chance-constrained optimization with Wasserstein metric," Journal of Global Optimization, Springer, vol. 79(4), pages 779-811, April.
    10. Larry G. Epstein, 1999. "A Definition of Uncertainty Aversion," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 66(3), pages 579-608.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiangyi Fan & Grani A. Hanasusanto, 2024. "A Decision Rule Approach for Two-Stage Data-Driven Distributionally Robust Optimization Problems with Random Recourse," INFORMS Journal on Computing, INFORMS, vol. 36(2), pages 526-542, March.
    2. Postek, K.S. & den Hertog, D. & Melenberg, B., 2015. "Computationally Tractable Counterparts of Distributionally Robust Constraints on Risk Measures (revision of CentER DP 2014-031)," Discussion Paper 2015-047, Tilburg University, Center for Economic Research.
    3. Shanshan Wang & Erick Delage, 2024. "A Column Generation Scheme for Distributionally Robust Multi-Item Newsvendor Problems," INFORMS Journal on Computing, INFORMS, vol. 36(3), pages 849-867, May.
    4. Postek, K.S. & den Hertog, D. & Melenberg, B., 2015. "Computationally Tractable Counterparts of Distributionally Robust Constraints on Risk Measures (revision of CentER DP 2014-031)," Other publications TiSEM eeb9c898-6943-4199-b747-3, Tilburg University, School of Economics and Management.
    5. Shunichi Ohmori, 2021. "A Predictive Prescription Using Minimum Volume k -Nearest Neighbor Enclosing Ellipsoid and Robust Optimization," Mathematics, MDPI, vol. 9(2), pages 1-16, January.
    6. L. Jeff Hong & Zhiyuan Huang & Henry Lam, 2021. "Learning-Based Robust Optimization: Procedures and Statistical Guarantees," Management Science, INFORMS, vol. 67(6), pages 3447-3467, June.
    7. Weiwei Fan & L. Jeff Hong & Xiaowei Zhang, 2020. "Distributionally Robust Selection of the Best," Management Science, INFORMS, vol. 66(1), pages 190-208, January.
    8. Antonio J. Conejo & Nicholas G. Hall & Daniel Zhuoyu Long & Runhao Zhang, 2021. "Robust Capacity Planning for Project Management," INFORMS Journal on Computing, INFORMS, vol. 33(4), pages 1533-1550, October.
    9. Ran Ji & Miguel A. Lejeune, 2021. "Data-Driven Optimization of Reward-Risk Ratio Measures," INFORMS Journal on Computing, INFORMS, vol. 33(3), pages 1120-1137, July.
    10. Wang, Fan & Zhang, Chao & Zhang, Hui & Xu, Liang, 2021. "Short-term physician rescheduling model with feature-driven demand for mental disorders outpatients," Omega, Elsevier, vol. 105(C).
    11. Zhi Chen & Melvyn Sim & Peng Xiong, 2020. "Robust Stochastic Optimization Made Easy with RSOME," Management Science, INFORMS, vol. 66(8), pages 3329-3339, August.
    12. Wolfram Wiesemann & Daniel Kuhn & Melvyn Sim, 2014. "Distributionally Robust Convex Optimization," Operations Research, INFORMS, vol. 62(6), pages 1358-1376, December.
    13. Yu Wang & Yu Zhang & Minglong Zhou & Jiafu Tang, 2023. "Feature‐driven robust surgery scheduling," Production and Operations Management, Production and Operations Management Society, vol. 32(6), pages 1921-1938, June.
    14. Postek, Krzysztof & Ben-Tal, A. & den Hertog, Dick & Melenberg, Bertrand, 2015. "Exact Robust Counterparts of Ambiguous Stochastic Constraints Under Mean and Dispersion Information," Other publications TiSEM d718e419-a375-4707-b206-e, Tilburg University, School of Economics and Management.
    15. Arlen Dean & Amirhossein Meisami & Henry Lam & Mark P. Van Oyen & Christopher Stromblad & Nick Kastango, 2022. "Quantile regression forests for individualized surgery scheduling," Health Care Management Science, Springer, vol. 25(4), pages 682-709, December.
    16. Haolin Ruan & Zhi Chen & Chin Pang Ho, 2023. "Adjustable Distributionally Robust Optimization with Infinitely Constrained Ambiguity Sets," INFORMS Journal on Computing, INFORMS, vol. 35(5), pages 1002-1023, September.
    17. Soumyadip Ghosh & Henry Lam, 2019. "Robust Analysis in Stochastic Simulation: Computation and Performance Guarantees," Operations Research, INFORMS, vol. 67(1), pages 232-249, January.
    18. Erick Delage & Ahmed Saif, 2022. "The Value of Randomized Solutions in Mixed-Integer Distributionally Robust Optimization Problems," INFORMS Journal on Computing, INFORMS, vol. 34(1), pages 333-353, January.
    19. Nilay Noyan & Gábor Rudolf & Miguel Lejeune, 2022. "Distributionally Robust Optimization Under a Decision-Dependent Ambiguity Set with Applications to Machine Scheduling and Humanitarian Logistics," INFORMS Journal on Computing, INFORMS, vol. 34(2), pages 729-751, March.
    20. Aleksandrina Goeva & Henry Lam & Huajie Qian & Bo Zhang, 2019. "Optimization-Based Calibration of Simulation Input Models," Operations Research, INFORMS, vol. 67(5), pages 1362-1382, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:313:y:2024:i:2:p:602-615. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.