IDEAS home Printed from https://ideas.repec.org/a/inm/orijoc/v32y4i2020p952-967.html
   My bibliography  Save this article

The Optimal Design of Low-Latency Virtual Backbones

Author

Listed:
  • Hamidreza Validi

    (School of Industrial Engineering and Management, Oklahoma State University, Stillwater, Oklahoma 74078)

  • Austin Buchanan

    (School of Industrial Engineering and Management, Oklahoma State University, Stillwater, Oklahoma 74078)

Abstract

Two nodes of a wireless network may not be able to communicate with each other directly, perhaps because of obstacles or insufficient signal strength. This necessitates the use of intermediate nodes to relay information. Often, one designates a (preferably small) subset of them to relay these messages (i.e., to serve as a virtual backbone for the wireless network), which can be seen as a connected dominating set (CDS) of the associated graph. Ideally, these communication paths should be short, leading to the notion of a latency-constrained CDS. In this paper, we point out several shortcomings of a previously studied formalization of a latency-constrained CDS and propose an alternative one. We introduce an integer programming formulation for the problem that has a variable for each node and imposes the latency constraints via an exponential number of cut-like inequalities. Two nice properties of this formulation are that (1) it applies when distances are hop-based and when they are weighted and (2) it easily generalizes to ensure fault tolerance. We provide a branch-and-cut implementation of this formulation and compare it with a new polynomial-size formulation. Computational experiments demonstrate the superiority of the cut-like formulation. We also study related questions from computational complexity, such as approximation hardness, and answer an open problem regarding the fault diameter of graphs.

Suggested Citation

  • Hamidreza Validi & Austin Buchanan, 2020. "The Optimal Design of Low-Latency Virtual Backbones," INFORMS Journal on Computing, INFORMS, vol. 32(4), pages 952-967, October.
  • Handle: RePEc:inm:orijoc:v:32:y:4:i:2020:p:952-967
    DOI: 10.1287/ijoc.2019.0914
    as

    Download full text from publisher

    File URL: https://doi.org/10.1287/ijoc.2019.0914
    Download Restriction: no

    File URL: https://libkey.io/10.1287/ijoc.2019.0914?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Abilio Lucena & Nelson Maculan & Luidi Simonetti, 2010. "Reformulations and solution algorithms for the maximum leaf spanning tree problem," Computational Management Science, Springer, vol. 7(3), pages 289-311, July.
    2. Ding-Zhu Du & Peng-Jun Wan, 2013. "Connected Dominating Set: Theory and Applications," Springer Optimization and Its Applications, Springer, edition 127, number 978-1-4614-5242-3, December.
    3. Veremyev, Alexander & Boginski, Vladimir, 2012. "Identifying large robust network clusters via new compact formulations of maximum k-club problems," European Journal of Operational Research, Elsevier, vol. 218(2), pages 316-326.
    4. Si Chen & Ivana Ljubić & S. Raghavan, 2015. "The Generalized Regenerator Location Problem," INFORMS Journal on Computing, INFORMS, vol. 27(2), pages 204-220, May.
    5. Li, Xiangyong & Aneja, Y.P., 2017. "Regenerator location problem: Polyhedral study and effective branch-and-cut algorithms," European Journal of Operational Research, Elsevier, vol. 257(1), pages 25-40.
    6. Austin Buchanan & Je Sang Sung & Sergiy Butenko & Eduardo L. Pasiliao, 2015. "An Integer Programming Approach for Fault-Tolerant Connected Dominating Sets," INFORMS Journal on Computing, INFORMS, vol. 27(1), pages 178-188, February.
    7. Bernard Gendron & Abilio Lucena & Alexandre Salles da Cunha & Luidi Simonetti, 2014. "Benders Decomposition, Branch-and-Cut, and Hybrid Algorithms for the Minimum Connected Dominating Set Problem," INFORMS Journal on Computing, INFORMS, vol. 26(4), pages 645-657, November.
    8. Buchanan, Austin & Sung, Je Sang & Boginski, Vladimir & Butenko, Sergiy, 2014. "On connected dominating sets of restricted diameter," European Journal of Operational Research, Elsevier, vol. 236(2), pages 410-418.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Austin Buchanan & Je Sang Sung & Sergiy Butenko & Eduardo L. Pasiliao, 2015. "An Integer Programming Approach for Fault-Tolerant Connected Dominating Sets," INFORMS Journal on Computing, INFORMS, vol. 27(1), pages 178-188, February.
    2. Li, Xiangyong & Aneja, Y.P., 2017. "Regenerator location problem: Polyhedral study and effective branch-and-cut algorithms," European Journal of Operational Research, Elsevier, vol. 257(1), pages 25-40.
    3. Xiangyong Li & Y. P. Aneja, 2020. "A new branch-and-cut approach for the generalized regenerator location problem," Annals of Operations Research, Springer, vol. 295(1), pages 229-255, December.
    4. Xinyun Wu & Zhipeng Lü & Fred Glover, 2022. "A Fast Vertex Weighting-Based Local Search for Finding Minimum Connected Dominating Sets," INFORMS Journal on Computing, INFORMS, vol. 34(2), pages 817-833, March.
    5. Markus Leitner & Ivana Ljubić & Martin Riedler & Mario Ruthmair, 2019. "Exact Approaches for Network Design Problems with Relays," INFORMS Journal on Computing, INFORMS, vol. 31(1), pages 171-192, February.
    6. Oleksandra Yezerska & Foad Mahdavi Pajouh & Alexander Veremyev & Sergiy Butenko, 2019. "Exact algorithms for the minimum s-club partitioning problem," Annals of Operations Research, Springer, vol. 276(1), pages 267-291, May.
    7. do Forte, Vinicius L. & Hanafi, Saïd & Lucena, Abilio, 2023. "Extended formulations for perfect domination problems and their algorithmic implications," European Journal of Operational Research, Elsevier, vol. 310(2), pages 566-581.
    8. Barış Yıldız & Oya Ekin Karaşan, 2017. "Regenerator Location Problem in Flexible Optical Networks," Operations Research, INFORMS, vol. 65(3), pages 595-620, June.
    9. Jiao Zhou & Zhao Zhang & Shaojie Tang & Xiaohui Huang & Ding-Zhu Du, 2018. "Breaking the O (ln n ) Barrier: An Enhanced Approximation Algorithm for Fault-Tolerant Minimum Weight Connected Dominating Set," INFORMS Journal on Computing, INFORMS, vol. 30(2), pages 225-235, May.
    10. Buchanan, Austin & Sung, Je Sang & Boginski, Vladimir & Butenko, Sergiy, 2014. "On connected dominating sets of restricted diameter," European Journal of Operational Research, Elsevier, vol. 236(2), pages 410-418.
    11. Mao Luo & Huigang Qin & Xinyun Wu & Caiquan Xiong, 2024. "A novel local search approach with connected dominating degree-based incremental neighborhood evaluation for the minimum 2-connected dominating set problem," Journal of Combinatorial Optimization, Springer, vol. 47(5), pages 1-26, July.
    12. Yıldız, Barış & Karaşan, Oya Ekin, 2015. "Regenerator Location Problem and survivable extensions: A hub covering location perspective," Transportation Research Part B: Methodological, Elsevier, vol. 71(C), pages 32-55.
    13. Sourour Elloumi & Olivier Hudry & Estel Marie & Agathe Martin & Agnès Plateau & Stéphane Rovedakis, 2021. "Optimization of wireless sensor networks deployment with coverage and connectivity constraints," Annals of Operations Research, Springer, vol. 298(1), pages 183-206, March.
    14. Hosseinali Salemi & Austin Buchanan, 2022. "Solving the Distance-Based Critical Node Problem," INFORMS Journal on Computing, INFORMS, vol. 34(3), pages 1309-1326, May.
    15. Veremyev, Alexander & Boginski, Vladimir & Pasiliao, Eduardo L. & Prokopyev, Oleg A., 2022. "On integer programming models for the maximum 2-club problem and its robust generalizations in sparse graphs," European Journal of Operational Research, Elsevier, vol. 297(1), pages 86-101.
    16. Vic Grout, 2017. "A Simple Approach to Dynamic Optimisation of Flexible Optical Networks with Practical Application," Future Internet, MDPI, vol. 9(2), pages 1-11, May.
    17. Komusiewicz, Christian & Nichterlein, André & Niedermeier, Rolf & Picker, Marten, 2019. "Exact algorithms for finding well-connected 2-clubs in sparse real-world graphs: Theory and experiments," European Journal of Operational Research, Elsevier, vol. 275(3), pages 846-864.
    18. Yiyong Xiao & Abdullah Konak, 2017. "A variable neighborhood search for the network design problem with relays," Journal of Heuristics, Springer, vol. 23(2), pages 137-164, June.
    19. Niels Grüttemeier & Philipp Heinrich Keßler & Christian Komusiewicz & Frank Sommer, 2024. "Efficient branch-and-bound algorithms for finding triangle-constrained 2-clubs," Journal of Combinatorial Optimization, Springer, vol. 48(3), pages 1-27, October.
    20. Filipa D. Carvalho & Maria Teresa Almeida, 2017. "The triangle k-club problem," Journal of Combinatorial Optimization, Springer, vol. 33(3), pages 814-846, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:orijoc:v:32:y:4:i:2020:p:952-967. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.