IDEAS home Printed from https://ideas.repec.org/a/gam/jftint/v9y2017i2p18-d99416.html
   My bibliography  Save this article

A Simple Approach to Dynamic Optimisation of Flexible Optical Networks with Practical Application

Author

Listed:
  • Vic Grout

    (Applied Research in Computing Laboratory (ARCLab), Wrexham Glyndŵr University, Wrexham, Wales, LL11 2AW, UK)

Abstract

This paper provides an initial introduction to, and definition of, the ‘Dynamically Powered Relays for a Flexible Optical Network’ (DPR-FON) problem for opto-electro-optical (OEO) regenerators used in optical networks. In such networks, optical transmission parameters can be varied dynamically as traffic patterns change. This will provide different bandwidths, but also change the regeneration limits as a result. To support this flexibility, OEOs (‘relays’) may be switched on and off as required, thus saving power. DPR-FON is shown to be NP-complete; consequently, solving such a dynamic problem in real-time requires a fast heuristic capable of delivering an acceptable approximation to the optimal configuration with low complexity. In this paper, just such an algorithm is developed, implemented, and evaluated against more computationally-demanding alternatives for two known cases. A number of real-world extensions are considered as the paper develops, combining to produce the ‘Generalised Dynamically Powered Relays for a Flexible Optical Network’ (GDPR-FON) problem. This, too, is analysed and an associated fast heuristic proposed, along with an exploration of the further research that is required.

Suggested Citation

  • Vic Grout, 2017. "A Simple Approach to Dynamic Optimisation of Flexible Optical Networks with Practical Application," Future Internet, MDPI, vol. 9(2), pages 1-11, May.
  • Handle: RePEc:gam:jftint:v:9:y:2017:i:2:p:18-:d:99416
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1999-5903/9/2/18/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1999-5903/9/2/18/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Abilio Lucena & Nelson Maculan & Luidi Simonetti, 2010. "Reformulations and solution algorithms for the maximum leaf spanning tree problem," Computational Management Science, Springer, vol. 7(3), pages 289-311, July.
    2. Cynthia Barnhart & Christopher A. Hane & Pamela H. Vance, 2000. "Using Branch-and-Price-and-Cut to Solve Origin-Destination Integer Multicommodity Flow Problems," Operations Research, INFORMS, vol. 48(2), pages 318-326, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Barış Yıldız & Oya Ekin Karaşan, 2017. "Regenerator Location Problem in Flexible Optical Networks," Operations Research, INFORMS, vol. 65(3), pages 595-620, June.
    2. Amy Cohn & Michael Magazine & George Polak, 2009. "Rank‐Cluster‐and‐Prune: An algorithm for generating clusters in complex set partitioning problems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 56(3), pages 215-225, April.
    3. Liang Chen & Wei-Kun Chen & Mu-Ming Yang & Yu-Hong Dai, 2021. "An exact separation algorithm for unsplittable flow capacitated network design arc-set polyhedron," Journal of Global Optimization, Springer, vol. 81(3), pages 659-689, November.
    4. Ashwin Arulselvan & Mohsen Rezapour, 2017. "Exact Approaches for Designing Multifacility Buy-at-Bulk Networks," INFORMS Journal on Computing, INFORMS, vol. 29(4), pages 597-611, November.
    5. Hela Masri & Saoussen Krichen, 2018. "Exact and approximate approaches for the Pareto front generation of the single path multicommodity flow problem," Annals of Operations Research, Springer, vol. 267(1), pages 353-377, August.
    6. Kang, Jangha & Park, Kyungchul & Park, Sungsoo, 2009. "Optimal multicast route packing," European Journal of Operational Research, Elsevier, vol. 196(1), pages 351-359, July.
    7. Garg, Manish & Smith, J. Cole, 2008. "Models and algorithms for the design of survivable multicommodity flow networks with general failure scenarios," Omega, Elsevier, vol. 36(6), pages 1057-1071, December.
    8. Ng, T.S. & Lee, L.H. & Chew, E.P., 2006. "Build-pack planning for hard disk drive assembly with approved vendor matrices and stochastic demands," European Journal of Operational Research, Elsevier, vol. 175(2), pages 1117-1140, December.
    9. X-Y Li & Y P Aneja & F Baki, 2010. "An ant colony optimization metaheuristic for single-path multicommodity network flow problems," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(9), pages 1340-1355, September.
    10. Baris Yildiz & Martin Savelsbergh, 2019. "Provably High-Quality Solutions for the Meal Delivery Routing Problem," Transportation Science, INFORMS, vol. 53(5), pages 1372-1388, September.
    11. Zhixing Luo & Hu Qin & T. C. E. Cheng & Qinghua Wu & Andrew Lim, 2021. "A Branch-and-Price-and-Cut Algorithm for the Cable-Routing Problem in Solar Power Plants," INFORMS Journal on Computing, INFORMS, vol. 33(2), pages 452-476, May.
    12. Belov, G. & Scheithauer, G., 2006. "A branch-and-cut-and-price algorithm for one-dimensional stock cutting and two-dimensional two-stage cutting," European Journal of Operational Research, Elsevier, vol. 171(1), pages 85-106, May.
    13. Si Chen & Ivana Ljubić & S. Raghavan, 2015. "The Generalized Regenerator Location Problem," INFORMS Journal on Computing, INFORMS, vol. 27(2), pages 204-220, May.
    14. Hadi W. Purnomo & Jonathan F. Bard, 2007. "Cyclic preference scheduling for nurses using branch and price," Naval Research Logistics (NRL), John Wiley & Sons, vol. 54(2), pages 200-220, March.
    15. Seohee Kim & Chungmok Lee, 2021. "A branch and price approach for the robust bandwidth packing problem with queuing delays," Annals of Operations Research, Springer, vol. 307(1), pages 251-275, December.
    16. Li, Xiangyong & Wei, Kai & Guo, Zhaoxia & Wang, Wei & Aneja, Y.P., 2021. "An exact approach for the service network design problem with heterogeneous resource constraints," Omega, Elsevier, vol. 102(C).
    17. Jans, Raf, 2010. "Classification of Dantzig-Wolfe reformulations for binary mixed integer programming problems," European Journal of Operational Research, Elsevier, vol. 204(2), pages 251-254, July.
    18. Bita Tadayon & J. Cole Smith, 2014. "Algorithms for an Integer Multicommodity Network Flow Problem with Node Reliability Considerations," Journal of Optimization Theory and Applications, Springer, vol. 161(2), pages 506-532, May.
    19. Buchanan, Austin & Sung, Je Sang & Boginski, Vladimir & Butenko, Sergiy, 2014. "On connected dominating sets of restricted diameter," European Journal of Operational Research, Elsevier, vol. 236(2), pages 410-418.
    20. Hamidreza Validi & Austin Buchanan, 2020. "The Optimal Design of Low-Latency Virtual Backbones," INFORMS Journal on Computing, INFORMS, vol. 32(4), pages 952-967, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jftint:v:9:y:2017:i:2:p:18-:d:99416. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.