IDEAS home Printed from https://ideas.repec.org/h/spr/isochp/978-3-319-64403-5_4.html
   My bibliography  Save this book chapter

One-Dimensional Cutting Stock

In: Introduction to Cutting and Packing Optimization

Author

Listed:
  • Guntram Scheithauer

    (TU Dresden)

Abstract

In difference to one-dimensional Bin Packing Problems (1BPP) where each item is considered to be a unique one, in a one-dimensional Cutting Stock Problem (1CSP), the number of different piece types is rather small, but their order demands (or availability in case of packing problems) are mostly large. Another differentiator of bin packing and cutting stock problems could be the magnitude of the respective optimal value. If it is small in comparison to the total number of items, then the instance is of BPP type, otherwise the problem type depends on the number of different patterns in a solution. In the beginning of this chapter, we consider the 1CSP with a single type of raw material. We present a solution strategy which is also applicable to higher-dimensional problems as, for instance, in the furniture industry when the production of rectangular pieces has to be optimized. Subsequently, we address generalizations and present alternative models. Finally, we investigate the relation between the standard ILP model and its LP relaxation and observe a small gap for any 1CSP instance.

Suggested Citation

  • Guntram Scheithauer, 2018. "One-Dimensional Cutting Stock," International Series in Operations Research & Management Science, in: Introduction to Cutting and Packing Optimization, chapter 0, pages 73-122, Springer.
  • Handle: RePEc:spr:isochp:978-3-319-64403-5_4
    DOI: 10.1007/978-3-319-64403-5_4
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. John Martinovic & Markus Hähnel & Guntram Scheithauer & Waltenegus Dargie, 2022. "An introduction to stochastic bin packing-based server consolidation with conflicts," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(2), pages 296-331, July.
    2. John Martinovic & Guntram Scheithauer, 2018. "Combinatorial investigations on the maximum gap for skiving stock instances of the divisible case," Annals of Operations Research, Springer, vol. 271(2), pages 811-829, December.
    3. Dell’Amico, Mauro & Delorme, Maxence & Iori, Manuel & Martello, Silvano, 2019. "Mathematical models and decomposition methods for the multiple knapsack problem," European Journal of Operational Research, Elsevier, vol. 274(3), pages 886-899.
    4. John Martinovic & Markus Hähnel & Guntram Scheithauer & Waltenegus Dargie & Andreas Fischer, 2019. "Cutting stock problems with nondeterministic item lengths: a new approach to server consolidation," 4OR, Springer, vol. 17(2), pages 173-200, June.
    5. John Martinovic, 2022. "A note on the integrality gap of cutting and skiving stock instances," 4OR, Springer, vol. 20(1), pages 85-104, March.
    6. de Lima, Vinícius L. & Alves, Cláudio & Clautiaux, François & Iori, Manuel & Valério de Carvalho, José M., 2022. "Arc flow formulations based on dynamic programming: Theoretical foundations and applications," European Journal of Operational Research, Elsevier, vol. 296(1), pages 3-21.
    7. Wang, Danni & Xiao, Fan & Zhou, Lei & Liang, Zhe, 2020. "Two-dimensional skiving and cutting stock problem with setup cost based on column-and-row generation," European Journal of Operational Research, Elsevier, vol. 286(2), pages 547-563.
    8. Maxence Delorme & Manuel Iori, 2020. "Enhanced Pseudo-polynomial Formulations for Bin Packing and Cutting Stock Problems," INFORMS Journal on Computing, INFORMS, vol. 32(1), pages 101-119, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:isochp:978-3-319-64403-5_4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.