IDEAS home Printed from https://ideas.repec.org/a/inm/orijoc/v29y2017i1p36-53.html
   My bibliography  Save this article

Solution of Monotone Complementarity and General Convex Programming Problems Using a Modified Potential Reduction Interior Point Method

Author

Listed:
  • Kuo-Ling Huang

    (Department of Industrial Engineering and Management Sciences, Northwestern University, Evanston, Illinois 60208)

  • Sanjay Mehrotra

    (Department of Industrial Engineering and Management Sciences, Northwestern University, Evanston, Illinois 60208)

Abstract

We present a homogeneous algorithm equipped with a modified potential function for the monotone complementarity problem. We show that this potential function is reduced by at least a constant amount if a scaled Lipschitz condition (SLC) is satisfied. A practical algorithm based on this potential function is implemented in a software package named iOptimize. The implementation in iOptimize maintains global linear and polynomial time convergence properties, while achieving practical performance. It either successfully solves the problem, or concludes that the SLC is not satisfied. When compared with the mature software package MOSEK (barrier solver version 6.0.0.106), iOptimize solves convex quadratic programming problems, convex quadratically constrained quadratic programming problems, and general convex programming problems in fewer iterations. Moreover, several problems for which MOSEK fails are solved to optimality. We also find that iOptimize detects infeasibility more reliably than the general nonlinear solvers Ipopt (version 3.9.2) and Knitro (version 8.0).

Suggested Citation

  • Kuo-Ling Huang & Sanjay Mehrotra, 2017. "Solution of Monotone Complementarity and General Convex Programming Problems Using a Modified Potential Reduction Interior Point Method," INFORMS Journal on Computing, INFORMS, vol. 29(1), pages 36-53, February.
  • Handle: RePEc:inm:orijoc:v:29:y:2017:i:1:p:36-53
    DOI: 10.1287/ijoc.2016.0715
    as

    Download full text from publisher

    File URL: https://doi.org/10.1287/ijoc.2016.0715
    Download Restriction: no

    File URL: https://libkey.io/10.1287/ijoc.2016.0715?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yu. E. Nesterov & M. J. Todd, 1997. "Self-Scaled Barriers and Interior-Point Methods for Convex Programming," Mathematics of Operations Research, INFORMS, vol. 22(1), pages 1-42, February.
    2. Michael J. Todd & Yinyu Ye, 1990. "A Centered Projective Algorithm for Linear Programming," Mathematics of Operations Research, INFORMS, vol. 15(3), pages 508-529, August.
    3. Yinyu Ye & Michael J. Todd & Shinji Mizuno, 1994. "An O(√nL)-Iteration Homogeneous and Self-Dual Linear Programming Algorithm," Mathematics of Operations Research, INFORMS, vol. 19(1), pages 53-67, February.
    4. S. Cafieri & M. D’Apuzzo & V. Simone & D. Serafino & G. Toraldo, 2007. "Convergence Analysis of an Inexact Potential Reduction Method for Convex Quadratic Programming," Journal of Optimization Theory and Applications, Springer, vol. 135(3), pages 355-366, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cosmin G. Petra & Florian A. Potra, 2019. "A homogeneous model for monotone mixed horizontal linear complementarity problems," Computational Optimization and Applications, Springer, vol. 72(1), pages 241-267, January.
    2. Chuangyin Dang & P. Jean-Jacques Herings & Peixuan Li, 2022. "An Interior-Point Differentiable Path-Following Method to Compute Stationary Equilibria in Stochastic Games," INFORMS Journal on Computing, INFORMS, vol. 34(3), pages 1403-1418, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mehdi Karimi & Levent Tunçel, 2020. "Primal–Dual Interior-Point Methods for Domain-Driven Formulations," Mathematics of Operations Research, INFORMS, vol. 45(2), pages 591-621, May.
    2. Sturm, J.F., 2001. "Avoiding Numerical Cancellation in the Interior Point Method for Solving Semidefinite Programs," Discussion Paper 2001-27, Tilburg University, Center for Economic Research.
    3. Zohrizadeh, Fariba & Josz, Cedric & Jin, Ming & Madani, Ramtin & Lavaei, Javad & Sojoudi, Somayeh, 2020. "A survey on conic relaxations of optimal power flow problem," European Journal of Operational Research, Elsevier, vol. 287(2), pages 391-409.
    4. Badenbroek, Riley & Dahl, Joachim, 2020. "An Algorithm for Nonsymmetric Conic Optimization Inspired by MOSEK," Other publications TiSEM bcf7ef05-e4e6-4ce8-b2e9-6, Tilburg University, School of Economics and Management.
    5. Chee-Khian Sim, 2019. "Interior point method on semi-definite linear complementarity problems using the Nesterov–Todd (NT) search direction: polynomial complexity and local convergence," Computational Optimization and Applications, Springer, vol. 74(2), pages 583-621, November.
    6. Sturm, J.F., 2001. "Avoiding Numerical Cancellation in the Interior Point Method for Solving Semidefinite Programs," Other publications TiSEM 949fb20a-a2c6-4d87-85ea-8, Tilburg University, School of Economics and Management.
    7. Robert Chares & François Glineur, 2008. "An interior-point method for the single-facility location problem with mixed norms using a conic formulation," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 68(3), pages 383-405, December.
    8. Enzo Busseti, 2019. "Derivative of a Conic Problem with a Unique Solution," Papers 1903.05753, arXiv.org, revised Mar 2019.
    9. Luo, Z-Q. & Sturm, J.F. & Zhang, S., 1998. "Conic convex programming and self-dual embedding," Econometric Institute Research Papers EI 9815, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    10. B.V. Halldórsson & R.H. Tütüncü, 2003. "An Interior-Point Method for a Class of Saddle-Point Problems," Journal of Optimization Theory and Applications, Springer, vol. 116(3), pages 559-590, March.
    11. G. Q. Wang & Y. Q. Bai, 2012. "A New Full Nesterov–Todd Step Primal–Dual Path-Following Interior-Point Algorithm for Symmetric Optimization," Journal of Optimization Theory and Applications, Springer, vol. 154(3), pages 966-985, September.
    12. G. Q. Wang & L. C. Kong & J. Y. Tao & G. Lesaja, 2015. "Improved Complexity Analysis of Full Nesterov–Todd Step Feasible Interior-Point Method for Symmetric Optimization," Journal of Optimization Theory and Applications, Springer, vol. 166(2), pages 588-604, August.
    13. E. A. Yıldırım, 2003. "An Interior-Point Perspective on Sensitivity Analysis in Semidefinite Programming," Mathematics of Operations Research, INFORMS, vol. 28(4), pages 649-676, November.
    14. Vasile L. Basescu & John E. Mitchell, 2008. "An Analytic Center Cutting Plane Approach for Conic Programming," Mathematics of Operations Research, INFORMS, vol. 33(3), pages 529-551, August.
    15. G. Q. Wang & Y. Q. Bai & X. Y. Gao & D. Z. Wang, 2015. "Improved Complexity Analysis of Full Nesterov–Todd Step Interior-Point Methods for Semidefinite Optimization," Journal of Optimization Theory and Applications, Springer, vol. 165(1), pages 242-262, April.
    16. J.F. Sturm & S. Zhang, 1998. "On Sensitivity of Central Solutions in Semidefinite Programming," Tinbergen Institute Discussion Papers 98-040/4, Tinbergen Institute.
    17. Changhe Liu & Hongwei Liu, 2012. "A new second-order corrector interior-point algorithm for semidefinite programming," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 75(2), pages 165-183, April.
    18. Behrouz Kheirfam, 2015. "A Corrector–Predictor Path-Following Method for Convex Quadratic Symmetric Cone Optimization," Journal of Optimization Theory and Applications, Springer, vol. 164(1), pages 246-260, January.
    19. S. Cafieri & M. D’Apuzzo & V. Simone & D. Serafino & G. Toraldo, 2007. "Convergence Analysis of an Inexact Potential Reduction Method for Convex Quadratic Programming," Journal of Optimization Theory and Applications, Springer, vol. 135(3), pages 355-366, December.
    20. Renato D. C. Monteiro & Paulo R. Zanjácomo, 2000. "General Interior-Point Maps and Existence of Weighted Paths for Nonlinear Semidefinite Complementarity Problems," Mathematics of Operations Research, INFORMS, vol. 25(3), pages 381-399, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:orijoc:v:29:y:2017:i:1:p:36-53. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.