IDEAS home Printed from https://ideas.repec.org/a/inm/orijds/v3y2024i1p84-104.html
   My bibliography  Save this article

A Supervised Tensor Dimension Reduction-Based Prognostic Model for Applications with Incomplete Imaging Data

Author

Listed:
  • Chengyu Zhou

    (Edward P. Fitts Department of Industrial and Systems Engineering, North Carolina State University, Raleigh, North Carolina 27606)

  • Xiaolei Fang

    (Edward P. Fitts Department of Industrial and Systems Engineering, North Carolina State University, Raleigh, North Carolina 27606)

Abstract

Imaging data-based prognostic models focus on using an asset’s degradation images to predict its time to failure (TTF). Most image-based prognostic models have two common limitations. First, they require degradation images to be complete (i.e., images are observed continuously and regularly over time). Second, they usually employ an unsupervised dimension reduction method to extract low-dimensional features and then use the features for TTF prediction. Because unsupervised dimension reduction is conducted on the degradation images without the involvement of TTFs, there is no guarantee that the extracted features are effective for failure time prediction. To address these challenges, this article develops a supervised tensor dimension reduction-based prognostic model. The model first proposes a supervised dimension reduction method for tensor data. It uses historical TTFs to guide the detection of a tensor subspace to extract low-dimensional features from high-dimensional incomplete degradation imaging data. Next, the extracted features are used to construct a prognostic model based on (log)-location-scale regression. An optimization algorithm for parameter estimation is proposed, and analytical solutions are discussed. Simulated data and a real-world data set are used to validate the performance of the proposed model.

Suggested Citation

  • Chengyu Zhou & Xiaolei Fang, 2024. "A Supervised Tensor Dimension Reduction-Based Prognostic Model for Applications with Incomplete Imaging Data," INFORMS Joural on Data Science, INFORMS, vol. 3(1), pages 84-104, April.
  • Handle: RePEc:inm:orijds:v:3:y:2024:i:1:p:84-104
    DOI: 10.1287/ijds.2022.x022
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/ijds.2022.x022
    Download Restriction: no

    File URL: https://libkey.io/10.1287/ijds.2022.x022?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yin Shu & Qianmei Feng & David W. Coit, 2015. "Life distribution analysis based on Lévy subordinators for degradation with random jumps," Naval Research Logistics (NRL), John Wiley & Sons, vol. 62(6), pages 483-492, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shu, Yin & Feng, Qianmei & Liu, Hao, 2019. "Using degradation-with-jump measures to estimate life characteristics of lithium-ion battery," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    2. Zhang, Zhengxin & Si, Xiaosheng & Hu, Changhua & Lei, Yaguo, 2018. "Degradation data analysis and remaining useful life estimation: A review on Wiener-process-based methods," European Journal of Operational Research, Elsevier, vol. 271(3), pages 775-796.
    3. Dong, Qinglai & Cui, Lirong, 2019. "A study on stochastic degradation process models under different types of failure Thresholds," Reliability Engineering and System Safety, Elsevier, vol. 181(C), pages 202-212.
    4. Narayanaswamy Balakrishnan & Chengwei Qin, 2019. "First Passage Time of a Lévy Degradation Model with Random Effects," Methodology and Computing in Applied Probability, Springer, vol. 21(1), pages 315-329, March.
    5. Gao, Hongda & Cui, Lirong & Dong, Qinglai, 2020. "Reliability modeling for a two-phase degradation system with a change point based on a Wiener process," Reliability Engineering and System Safety, Elsevier, vol. 193(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:orijds:v:3:y:2024:i:1:p:84-104. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.