IDEAS home Printed from https://ideas.repec.org/a/inm/ordeca/v20y2023i2p151-165.html
   My bibliography  Save this article

Determining the Accuracy of the Triangular and PERT Distributions

Author

Listed:
  • Imran A. Khan

    (Operations Research & Industrial Engineering, The University of Texas, Austin, Texas 78712)

  • J. Eric Bickel

    (Operations Research & Industrial Engineering, The University of Texas, Austin, Texas 78712; Information, Risk, and Operations Management, The University of Texas, Austin, Texas 78712)

  • Robert K. Hammond

    (Information, Risk, and Operations Management, The University of Texas, Austin, Texas 78712)

Abstract

The Triangular and PERT (Program Evaluation Review Technique) distribution probability density functions are commonly used in decision and risk analyses. These distributions are popular because they are each specified by only three points (two support bounds and the mode) that are believed to be easy to assess from experts or data. In this paper, we carefully analyze how close the Triangular and PERT distributions are to other distributions sharing the same support and mode and show that the errors induced by the Triangular and PERT distributions are significant. We further show that distributions that are characterized by the median tend to provide a better fit than do those that are characterized by the mode.

Suggested Citation

  • Imran A. Khan & J. Eric Bickel & Robert K. Hammond, 2023. "Determining the Accuracy of the Triangular and PERT Distributions," Decision Analysis, INFORMS, vol. 20(2), pages 151-165, June.
  • Handle: RePEc:inm:ordeca:v:20:y:2023:i:2:p:151-165
    DOI: 10.1287/deca.2022.0464
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/deca.2022.0464
    Download Restriction: no

    File URL: https://libkey.io/10.1287/deca.2022.0464?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Donald L. Keefer & Samuel E. Bodily, 1983. "Three-Point Approximations for Continuous Random Variables," Management Science, INFORMS, vol. 29(5), pages 595-609, May.
    2. Robert K. Hammond & J. Eric Bickel, 2013. "Reexamining Discrete Approximations to Continuous Distributions," Decision Analysis, INFORMS, vol. 10(1), pages 6-25, March.
    3. Christopher C. Hadlock & J. Eric Bickel, 2019. "The Generalized Johnson Quantile-Parameterized Distribution System," Decision Analysis, INFORMS, vol. 16(1), pages 67-85, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Woodruff, Joshua & Dimitrov, Nedialko B., 2018. "Optimal discretization for decision analysis," Operations Research Perspectives, Elsevier, vol. 5(C), pages 288-305.
    2. Konstantin Pavlikov & Stan Uryasev, 2018. "CVaR distance between univariate probability distributions and approximation problems," Annals of Operations Research, Springer, vol. 262(1), pages 67-88, March.
    3. Fadhil Y. Al-Aboosi & Mahmoud M. El-Halwagi, 2019. "A Stochastic Optimization Approach to the Design of Shale Gas/Oil Wastewater Treatment Systems with Multiple Energy Sources under Uncertainty," Sustainability, MDPI, vol. 11(18), pages 1-39, September.
    4. Tianyang Wang & James S. Dyer & John C. Butler, 2016. "Modeling Correlated Discrete Uncertainties in Event Trees with Copulas," Risk Analysis, John Wiley & Sons, vol. 36(2), pages 396-410, February.
    5. Jing Ai & Patrick L. Brockett & Tianyang Wang, 2017. "Optimal Enterprise Risk Management and Decision Making With Shared and Dependent Risks," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 84(4), pages 1127-1169, December.
    6. Sahoo, Nihar R. & Mohapatra, Pratap K.J. & Mahanty, Biswajit, 2017. "Compliance choice analysis for India's thermal power sector in the market-based energy efficiency regime," Energy Policy, Elsevier, vol. 108(C), pages 624-633.
    7. Karl Friedrich Mina & Gerald H. L. Cheang & Carl Chiarella, 2015. "Approximate Hedging Of Options Under Jump-Diffusion Processes," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 18(04), pages 1-26.
    8. Zhang, Jiyuan & Tang, Hailong & Chen, Min, 2019. "Linear substitute model-based uncertainty analysis of complicated non-linear energy system performance (case study of an adaptive cycle engine)," Applied Energy, Elsevier, vol. 249(C), pages 87-108.
    9. Thomas W. Keelin & Bradford W. Powley, 2011. "Quantile-Parameterized Distributions," Decision Analysis, INFORMS, vol. 8(3), pages 206-219, September.
    10. Tristan Roger & Wael Bousselmi & Patrick Roger & Marc Willinger, 2018. "The effect of price magnitude on analysts' forecasts: evidence from the lab," Working Papers hal-01954919, HAL.
    11. Tanaka, Ken'ichiro & Toda, Alexis Akira, 2015. "Discretizing Distributions with Exact Moments: Error Estimate and Convergence Analysis," University of California at San Diego, Economics Working Paper Series qt7g23r5kh, Department of Economics, UC San Diego.
    12. Robert K. Hammond & J. Eric Bickel, 2013. "Reexamining Discrete Approximations to Continuous Distributions," Decision Analysis, INFORMS, vol. 10(1), pages 6-25, March.
    13. Saurabh Bansal & Mahesh Nagarajan, 2017. "Product Portfolio Management with Production Flexibility in Agribusiness," Operations Research, INFORMS, vol. 65(4), pages 914-930, August.
    14. Yijing Li & Prakash P. Shenoy, 2012. "A Framework for Solving Hybrid Influence Diagrams Containing Deterministic Conditional Distributions," Decision Analysis, INFORMS, vol. 9(1), pages 55-75, March.
    15. Rosenbloom, E. S., 1997. "A probabilistic interpretation of the final rankings in AHP," European Journal of Operational Research, Elsevier, vol. 96(2), pages 371-378, January.
    16. Itzhak Ben-David & John R. Graham & Campbell R. Harvey, 2007. "Managerial Overconfidence and Corporate Policies," NBER Working Papers 13711, National Bureau of Economic Research, Inc.
    17. Ravi Kashyap, 2016. "The Perfect Marriage and Much More: Combining Dimension Reduction, Distance Measures and Covariance," Papers 1603.09060, arXiv.org, revised Jul 2019.
    18. Markus Glaser & Martin Weber, 2007. "Overconfidence and trading volume," The Geneva Papers on Risk and Insurance Theory, Springer;International Association for the Study of Insurance Economics (The Geneva Association), vol. 32(1), pages 1-36, June.
    19. Robert K. Perdue & William J. McAllister & Peter V. King & Bruce G. Berkey, 1999. "Valuation of R and D Projects Using Options Pricing and Decision Analysis Models," Interfaces, INFORMS, vol. 29(6), pages 57-74, December.
    20. Durbach, Ian N. & Stewart, Theodor J., 2012. "A comparison of simplified value function approaches for treating uncertainty in multi-criteria decision analysis," Omega, Elsevier, vol. 40(4), pages 456-464.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ordeca:v:20:y:2023:i:2:p:151-165. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.