IDEAS home Printed from https://ideas.repec.org/a/bpj/ecqcon/v17y2002i1p39-61n4.html
   My bibliography  Save this article

Optimal np Control Charts with Variable Sample Sizes or Variable Sampling Intervals

Author

Listed:
  • Luo Hua

    (School of Mechanical and Production Engineering, Nanyang Technological University, Singapore 639798)

  • Wu Zhang

    (School of Mechanical and Production Engineering, Nanyang Technological University, Singapore 639798)

Abstract

Many researches have shown that the adaptive control charts are more effective than the traditional static ones in detecting process shifts. This paper develops an algorithm for the optimization designs of the Variable Sample Size (VSS) np chart and the Variable Sampling Intervals (VSI) np chart for monitoring process fraction nonconforming p. The properties of the VSI and VSS np charts are measured by the steady-state Average Time to Signal (ATS). The performance of these adaptive np charts are studied and compared with the static np charts. It is found that the adaptive np charts do improve the effectiveness significantly, especially for detecting small or moderate process shifts.

Suggested Citation

  • Luo Hua & Wu Zhang, 2002. "Optimal np Control Charts with Variable Sample Sizes or Variable Sampling Intervals," Stochastics and Quality Control, De Gruyter, vol. 17(1), pages 39-61, January.
  • Handle: RePEc:bpj:ecqcon:v:17:y:2002:i:1:p:39-61:n:4
    DOI: 10.1515/EQC.2002.39
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/EQC.2002.39
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.1515/EQC.2002.39?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Joel M. Calabrese, 1995. "Bayesian Process Control for Attributes," Management Science, INFORMS, vol. 41(4), pages 637-645, April.
    2. Evan L. Porteus & Alexandar Angelus, 1997. "Opportunities for Improved Statistical Process Control," Management Science, INFORMS, vol. 43(9), pages 1214-1228, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nenes, George & Tagaras, George, 2007. "The economically designed two-sided Bayesian control chart," European Journal of Operational Research, Elsevier, vol. 183(1), pages 263-277, November.
    2. George Tagaras & Yiannis Nikolaidis, 2002. "Comparing the Effectiveness of Various Bayesian X̄ Control Charts," Operations Research, INFORMS, vol. 50(5), pages 878-888, October.
    3. Makis, Viliam, 2009. "Multivariate Bayesian process control for a finite production run," European Journal of Operational Research, Elsevier, vol. 194(3), pages 795-806, May.
    4. Viliam Makis, 2008. "Multivariate Bayesian Control Chart," Operations Research, INFORMS, vol. 56(2), pages 487-496, April.
    5. Tagaras, George, 2017. "New indices for the evaluation of the statistical properties of Bayesian x¯ control charts for short runsAuthor-Name: Nikolaidis, Yiannis," European Journal of Operational Research, Elsevier, vol. 259(1), pages 280-292.
    6. Shoshana Anily & Abraham Grosfeld-Nir, 2006. "An Optimal Lot-Sizing and Offline Inspection Policy in the Case of Nonrigid Demand," Operations Research, INFORMS, vol. 54(2), pages 311-323, April.
    7. Abraham Grosfeld‐Nir & Eyal Cohen & Yigal Gerchak, 2007. "Production to order and off‐line inspection when the production process is partially observable," Naval Research Logistics (NRL), John Wiley & Sons, vol. 54(8), pages 845-858, December.
    8. Jue Wang & Chi-Guhn Lee, 2015. "Multistate Bayesian Control Chart Over a Finite Horizon," Operations Research, INFORMS, vol. 63(4), pages 949-964, August.
    9. Wooseung Jang & J. George Shanthikumar, 2002. "Stochastic allocation of inspection capacity to competitive processes," Naval Research Logistics (NRL), John Wiley & Sons, vol. 49(1), pages 78-94, February.
    10. Naderkhani, Farnoosh & Makis, Viliam, 2016. "Economic design of multivariate Bayesian control chart with two sampling intervals," International Journal of Production Economics, Elsevier, vol. 174(C), pages 29-42.
    11. Erica L. Plambeck & Terry A. Taylor, 2019. "Testing by Competitors in Enforcement of Product Standards," Management Science, INFORMS, vol. 65(4), pages 1735-1751, April.
    12. Linderman, Kevin & McKone-Sweet, Kathleen E. & Anderson, John C., 2005. "An integrated systems approach to process control and maintenance," European Journal of Operational Research, Elsevier, vol. 164(2), pages 324-340, July.
    13. Jue Wang, 2016. "Minimizing the false alarm rate in systems with transient abnormality," Naval Research Logistics (NRL), John Wiley & Sons, vol. 63(4), pages 320-334, June.
    14. Yadpirun Supharakonsakun, 2024. "Bayesian Control Chart for Number of Defects in Production Quality Control," Mathematics, MDPI, vol. 12(12), pages 1-10, June.
    15. Mahfuza Khatun & Michael B.C. Khoo & Sajal Saha & Philippe Castagliola, 2021. "A new distribution‐free adaptive sample size control chart for a finite production horizon and its application in monitoring fill volume of soft drink beverage bottles," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 37(1), pages 84-97, January.
    16. Kulkarni, Shailesh S., 2008. "Loss-based quality costs and inventory planning: General models and insights," European Journal of Operational Research, Elsevier, vol. 188(2), pages 428-449, July.
    17. Rui Jiang & Michael Kim & Viliam Makis, 2012. "A Bayesian model and numerical algorithm for CBM availability maximization," Annals of Operations Research, Springer, vol. 196(1), pages 333-348, July.
    18. Abraham Grosfeld-Nir & Yigal Gerchak & Qi-Ming He, 2000. "Manufacturing to Order with Random Yield and Costly Inspection," Operations Research, INFORMS, vol. 48(5), pages 761-767, October.
    19. Barry R. Cobb, 2021. "Statistical Process Control for the Number of Defectives with Limited Memory," Decision Analysis, INFORMS, vol. 18(3), pages 203-217, September.
    20. Asma Amdouni & Philippe Castagliola & Hassen Taleb & Giovanni Celano, 2017. "A variable sampling interval Shewhart control chart for monitoring the coefficient of variation in short production runs," International Journal of Production Research, Taylor & Francis Journals, vol. 55(19), pages 5521-5536, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:ecqcon:v:17:y:2002:i:1:p:39-61:n:4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.