IDEAS home Printed from https://ideas.repec.org/a/inm/ordeca/v14y2017i1p21-34.html
   My bibliography  Save this article

Discretization Precision and Assessment Error

Author

Listed:
  • Robert K. Hammond

    (Chevron North America Exploration and Production Company, Houston, Texas 77002)

  • J. Eric Bickel

    (Operations Research and Industrial Engineering, The University of Texas, Austin, Texas 78712)

Abstract

Continuous probability distributions are often discretized by assigning a weight to each of several percentiles (e.g., the 10th, 50th, and 90th percentiles). Previous work has analyzed the accuracy of various discretization methods. In practice, however, the assessed percentiles may not be precise. In this paper, we compare the performance of several discretization methods when the probability assessments are subject to error. Our results indicate that one should still strive to use the best discretization method even in the face of assessment error. This is particularly true if one is trying to preserve the variance and higher moments of the continuous distribution.

Suggested Citation

  • Robert K. Hammond & J. Eric Bickel, 2017. "Discretization Precision and Assessment Error," Decision Analysis, INFORMS, vol. 14(1), pages 21-34, March.
  • Handle: RePEc:inm:ordeca:v:14:y:2017:i:1:p:21-34
    DOI: 10.1287/deca.2016.0342
    as

    Download full text from publisher

    File URL: https://doi.org/10.1287/deca.2016.0342
    Download Restriction: no

    File URL: https://libkey.io/10.1287/deca.2016.0342?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. James E. Smith, 1993. "Moment Methods for Decision Analysis," Management Science, INFORMS, vol. 39(3), pages 340-358, March.
    2. Donald L. Keefer, 1994. "Certainty Equivalents for Three-Point Discrete-Distribution Approximations," Management Science, INFORMS, vol. 40(6), pages 760-773, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Robert K. Hammond & J. Eric Bickel, 2013. "Reexamining Discrete Approximations to Continuous Distributions," Decision Analysis, INFORMS, vol. 10(1), pages 6-25, March.
    2. Konstantin Pavlikov & Stan Uryasev, 2018. "CVaR distance between univariate probability distributions and approximation problems," Annals of Operations Research, Springer, vol. 262(1), pages 67-88, March.
    3. Donald L. Keefer & Craig W. Kirkwood & James L. Corner, 2004. "Perspective on Decision Analysis Applications, 1990–2001," Decision Analysis, INFORMS, vol. 1(1), pages 4-22, March.
    4. De Reyck, Bert & Degraeve, Zeger & Vandenborre, Roger, 2008. "Project options valuation with net present value and decision tree analysis," European Journal of Operational Research, Elsevier, vol. 184(1), pages 341-355, January.
    5. Woodruff, Joshua & Dimitrov, Nedialko B., 2018. "Optimal discretization for decision analysis," Operations Research Perspectives, Elsevier, vol. 5(C), pages 288-305.
    6. John M. Charnes & Prakash P. Shenoy, 2004. "Multistage Monte Carlo Method for Solving Influence Diagrams Using Local Computation," Management Science, INFORMS, vol. 50(3), pages 405-418, March.
    7. Kjetil Høyland & Stein W. Wallace, 2001. "Generating Scenario Trees for Multistage Decision Problems," Management Science, INFORMS, vol. 47(2), pages 295-307, February.
    8. Jing Ai & Patrick L. Brockett & Tianyang Wang, 2017. "Optimal Enterprise Risk Management and Decision Making With Shared and Dependent Risks," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 84(4), pages 1127-1169, December.
    9. Thomas W. Keelin & Bradford W. Powley, 2011. "Quantile-Parameterized Distributions," Decision Analysis, INFORMS, vol. 8(3), pages 206-219, September.
    10. Tanaka, Ken'ichiro & Toda, Alexis Akira, 2015. "Discretizing Distributions with Exact Moments: Error Estimate and Convergence Analysis," University of California at San Diego, Economics Working Paper Series qt7g23r5kh, Department of Economics, UC San Diego.
    11. Yifei Zhao & Stein W. Wallace, 2016. "Appraising redundancy in facility layout," International Journal of Production Research, Taylor & Francis Journals, vol. 54(3), pages 665-679, February.
    12. Chung-Li Tseng & Tong Zhao & Chung Fu, 2009. "Contingency estimation using a real options approach," Construction Management and Economics, Taylor & Francis Journals, vol. 27(11), pages 1073-1087.
    13. Ravi Kashyap, 2016. "The Perfect Marriage and Much More: Combining Dimension Reduction, Distance Measures and Covariance," Papers 1603.09060, arXiv.org, revised Jul 2019.
    14. Kashyap, Ravi, 2019. "The perfect marriage and much more: Combining dimension reduction, distance measures and covariance," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 536(C).
    15. James W. Taylor, 2005. "Generating Volatility Forecasts from Value at Risk Estimates," Management Science, INFORMS, vol. 51(5), pages 712-725, May.
    16. Backe, Stian & Ahang, Mohammadreza & Tomasgard, Asgeir, 2021. "Stable stochastic capacity expansion with variable renewables: Comparing moment matching and stratified scenario generation sampling," Applied Energy, Elsevier, vol. 302(C).
    17. Silvia Araújo dos Reis & José Eugenio Leal & Antônio Márcio Tavares Thomé, 2023. "A Two-Stage Stochastic Linear Programming Model for Tactical Planning in the Soybean Supply Chain," Logistics, MDPI, vol. 7(3), pages 1-26, August.
    18. Bistline, John E., 2015. "Electric sector capacity planning under uncertainty: Climate policy and natural gas in the US," Energy Economics, Elsevier, vol. 51(C), pages 236-251.
    19. Craig W. Kirkwood & Matthew P. Slaven & Arnold Maltz, 2005. "Improving Supply-Chain-Reconfiguration Decisions at IBM," Interfaces, INFORMS, vol. 35(6), pages 460-473, December.
    20. Concha Bielza & Peter Müller & David Ríos Insua, 1999. "Decision Analysis by Augmented Probability Simulation," Management Science, INFORMS, vol. 45(7), pages 995-1007, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ordeca:v:14:y:2017:i:1:p:21-34. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.