IDEAS home Printed from https://ideas.repec.org/a/imx/journl/v18y2023i3p1.html
   My bibliography  Save this article

Loan Default Prediction: A Complete Revision of LendingClub

Author

Listed:
  • José Antonio Núñez Mora

    (Instituto Tecnológico y de Estudios Superiores de Monterrey, México)

  • Pamela Moncayo

    (Instituto Tecnológico y de Estudios Superiores de Monterrey, México)

  • Carlos Franco

    (Instituto Tecnológico y de Estudios Superiores de Monterrey, México)

  • Pilar Madrazo-Lemarroy

    (Universidad Anáhuac, México)

  • Jaime Beltrán

    (Universidad Anáhuac, México)

Abstract

El objetivo del estudio es determinar un modelo de predicción de default crediticio usando la base de datos de LendingClub. La metodología consiste en estimar las variables que influyen en el proceso de predicción de préstamos pagados y no pagados utilizando el algoritmo Random Forest. El algoritmo define los factores con mayor influencia sobre el pago o el impago, generando un modelo reducido a nueve predictores relacionados con el historial crediticio del prestatario y el historial de pagos dentro de la plataforma. La medición del desempeño del modelo genera un resultado F1 Macro Score con una precisión mayor al 90% de la muestra de evaluación. Las contribuciones de este estudio incluyen, el haber utilizado la base de datos completa de toda la operación de LendingClub disponible, para obtener variables trascendentales para la tarea de clasificación y predicción, que pueden ser útiles para estimar la morosidad en el mercado de préstamos de persona a persona. Podemos sacar dos conclusiones importantes, primero confirmamos la capacidad del algoritmo Random Forest para predecir problemas de clasificación binaria en base a métricas de rendimiento obtenidas y segundo, denotamos la influencia de las variables tradicionales de puntuación de crédito en los problemas de predicción por defecto.

Suggested Citation

  • José Antonio Núñez Mora & Pamela Moncayo & Carlos Franco & Pilar Madrazo-Lemarroy & Jaime Beltrán, 2023. "Loan Default Prediction: A Complete Revision of LendingClub," Remef - Revista Mexicana de Economía y Finanzas Nueva Época REMEF (The Mexican Journal of Economics and Finance), Instituto Mexicano de Ejecutivos de Finanzas, IMEF, vol. 18(3), pages 1-13, Julio - S.
  • Handle: RePEc:imx:journl:v:18:y:2023:i:3:p:1
    as

    Download full text from publisher

    File URL: https://www.remef.org.mx/index.php/remef/article/view/886
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pankaj Kumar Maskara & Emre Kuvvet & Gengxuan Chen, 2021. "The role of P2P platforms in enhancing financial inclusion in the United States: An analysis of peer‐to‐peer lending across the rural–urban divide," Financial Management, Financial Management Association International, vol. 50(3), pages 747-774, September.
    2. Markus K. Brunnermeier, 2009. "Deciphering the Liquidity and Credit Crunch 2007-2008," Journal of Economic Perspectives, American Economic Association, vol. 23(1), pages 77-100, Winter.
    3. Gonzalez, Laura & Loureiro, Yuliya Komarova, 2014. "When can a photo increase credit? The impact of lender and borrower profiles on online peer-to-peer loans," Journal of Behavioral and Experimental Finance, Elsevier, vol. 2(C), pages 44-58.
    4. Tobias Berg & Valentin Burg & Ana Gombović & Manju Puri, 2020. "On the Rise of FinTechs: Credit Scoring Using Digital Footprints," The Review of Financial Studies, Society for Financial Studies, vol. 33(7), pages 2845-2897.
    5. Julapa Jagtiani & Catharine Lemieux, 2019. "The roles of alternative data and machine learning in fintech lending: Evidence from the LendingClub consumer platform," Financial Management, Financial Management Association International, vol. 48(4), pages 1009-1029, December.
    6. Qizhi Tao & Yizhe Dong & Ziming Lin, 2017. "Who can get money? Evidence from the Chinese peer-to-peer lending platform," Information Systems Frontiers, Springer, vol. 19(3), pages 425-441, June.
    7. Juanjuan Zhang & Peng Liu, 2012. "Rational Herding in Microloan Markets," Management Science, INFORMS, vol. 58(5), pages 892-912, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pankaj Kumar Maskara & Emre Kuvvet & Gengxuan Chen, 2021. "The role of P2P platforms in enhancing financial inclusion in the United States: An analysis of peer‐to‐peer lending across the rural–urban divide," Financial Management, Financial Management Association International, vol. 50(3), pages 747-774, September.
    2. Christoph Bertsch & Isaiah Hull & Xin Zhang, 2021. "Monetary Normalizations and Consumer Credit: Evidence from Fed Liftoff and Online Lending," International Journal of Central Banking, International Journal of Central Banking, vol. 17(71), pages 1-47, December.
    3. Bertsch, Christoph & Hull, Isaiah & Qi, Yingjie & Zhang, Xin, 2020. "Bank misconduct and online lending," Journal of Banking & Finance, Elsevier, vol. 116(C).
    4. Gao, Mingze & Leung, Henry & Liu, Linhui & Qiu, Buhui, 2023. "Consumer behaviour and credit supply: Evidence from an Australian FinTech lender," Finance Research Letters, Elsevier, vol. 57(C).
    5. Bollaert, Helen & Lopez-de-Silanes, Florencio & Schwienbacher, Armin, 2021. "Fintech and access to finance," Journal of Corporate Finance, Elsevier, vol. 68(C).
    6. Sumin Hu & Qi Zhu & Xia Zhao & Ziyue Xu, 2023. "Digital Finance and Corporate Sustainability Performance: Promoting or Restricting? Evidence from China’s Listed Companies," Sustainability, MDPI, vol. 15(13), pages 1-16, June.
    7. Doerr, Sebastian & Frost, Jon & Gambacorta, Leonardo & Shreeti, Vatsala, 2023. "Big techs in finance," CEPR Discussion Papers 18665, C.E.P.R. Discussion Papers.
    8. Štefan Lyócsa & Petra Vašaničová & Branka Hadji Misheva & Marko Dávid Vateha, 2022. "Default or profit scoring credit systems? Evidence from European and US peer-to-peer lending markets," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-21, December.
    9. Kowalewski, Oskar & Pisany, Paweł, 2022. "Banks' consumer lending reaction to fintech and bigtech credit emergence in the context of soft versus hard credit information processing," International Review of Financial Analysis, Elsevier, vol. 81(C).
    10. Joseph P. Hughes & Julapa Jagtiani & Choon-Geol Moon, 2022. "Consumer lending efficiency: commercial banks versus a fintech lender," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-39, December.
    11. Sunghun Chung & Keongtae Kim & Chul Ho Lee & Wonseok Oh, 2023. "Interdependence between online peer‐to‐peer lending and cryptocurrency markets and its effects on financial inclusion," Production and Operations Management, Production and Operations Management Society, vol. 32(6), pages 1939-1957, June.
    12. Xia, Yanchun & Qiao, Zhilin & Xie, Guanghua, 2022. "Corporate resilience to the COVID-19 pandemic: The role of digital finance," Pacific-Basin Finance Journal, Elsevier, vol. 74(C).
    13. Li, Yuelei & Hao, Aiting & Zhang, Xiaotao & Xiong, Xiong, 2018. "Network topology and systemic risk in Peer-to-Peer lending market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 118-130.
    14. Yanhong Guo & Shuai Jiang & Wenjun Zhou & Chunyu Luo & Hui Xiong, 2021. "A predictive indicator using lender composition for loan evaluation in P2P lending," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-24, December.
    15. Wang, Xiaoting & Hou, Siyuan & Kyaw, Khine & Xue, Xupeng & Liu, Xueqin, 2023. "Exploring the determinants of Fintech Credit: A comprehensive analysis," Economic Modelling, Elsevier, vol. 126(C).
    16. Zhou, Nan & Sun, Ruohan, 2024. "Coping with the storm: The role of fintech in SME survival," International Review of Financial Analysis, Elsevier, vol. 93(C).
    17. Ma, Qianli & Xu, Lei & Anwar, Sajid & Lu, Zenghua, 2023. "Banking competition and the use of shadow credit: Evidence from lending marketplaces," Global Finance Journal, Elsevier, vol. 58(C).
    18. Tobias Berg & Andreas Fuster & Manju Puri, 2022. "FinTech Lending," Annual Review of Financial Economics, Annual Reviews, vol. 14(1), pages 187-207, November.
    19. Lu, Haitian & Wang, Bo & Wang, Haizhi & Zhao, Tianyu, 2020. "Does social capital matter for peer-to-peer-lending? Empirical evidence," Pacific-Basin Finance Journal, Elsevier, vol. 61(C).
    20. Chen, Pei-Fen & Lo, Shihmin & Tang, Hai-Yuan, 2022. "What if borrowers stop paying their loans? Investors’ rates of return on a peer-to-peer lending platform," International Review of Economics & Finance, Elsevier, vol. 77(C), pages 359-377.

    More about this item

    Keywords

    Random Forest; Préstamos persona a persona; LendingClub; SMOTE; Fintech. Predicción del Default;
    All these keywords.

    JEL classification:

    • C24 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Truncated and Censored Models; Switching Regression Models; Threshold Regression Models
    • G23 - Financial Economics - - Financial Institutions and Services - - - Non-bank Financial Institutions; Financial Instruments; Institutional Investors
    • O16 - Economic Development, Innovation, Technological Change, and Growth - - Economic Development - - - Financial Markets; Saving and Capital Investment; Corporate Finance and Governance

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:imx:journl:v:18:y:2023:i:3:p:1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ricardo Mendoza (email available below). General contact details of provider: https://www.remef.org.mx/index.php/remef/index .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.