IDEAS home Printed from https://ideas.repec.org/a/imx/journl/v17y2022i2a2.html
   My bibliography  Save this article

Estimación bayesiana del modelo de difusión con saltos de Merton

Author

Listed:
  • Miguel Antonio Alba Suarez

    (Universidad Santo Tomás, Colombia)

  • Miguel Ángel Alba Acosta

    (Universität Potsdam, Alemania)

  • David Camilo Alba Acosta

    (Universidad Santo Tomás, Colombia)

Abstract

En la literatura existen diferentes aportes en la forma como se puede identificar la evolución de los derivados financieros vía precios de los activos subyacentes. El Modelo de Difusión con Saltos de Merton (MDSM) es una de las referencias más importantes para modelar la dinámica estocástica de los rendimientos de los activos en comparación con el modelo de Black y Scholes (B&S). El objetivo principal de este trabajo es realizar un análisis comparativo entre el MDSM y el B&S desde un enfoque bayesiano utilizando métodos Markov-Chain-Monte-Carlo (MCMC). Las simulaciones aplicadas al registro diario de algunas de las principales acciones que conforman el índice NASDAQ evidenciaron la superioridad en ajuste del MDSM sobre los rendimientos financieros vía MCMC. Algunas recomendaciones y limitaciones de esta investigación surgen en la propuesta adecuada para los valores usados como parámetros para las distribuciones a priori previas a la estimación de las distribuciones posterior para cada parámetro de cada modelo. El mayor aporte dentro del marco estadístico de esta investigación es ilustrar la efectividad los métodos MCMC para MDSM en yuxtaposición a B&S.

Suggested Citation

  • Miguel Antonio Alba Suarez & Miguel Ángel Alba Acosta & David Camilo Alba Acosta, 2022. "Estimación bayesiana del modelo de difusión con saltos de Merton," Remef - Revista Mexicana de Economía y Finanzas Nueva Época REMEF (The Mexican Journal of Economics and Finance), Instituto Mexicano de Ejecutivos de Finanzas, IMEF, vol. 17(2), pages 1-32, Abril - J.
  • Handle: RePEc:imx:journl:v:17:y:2022:i:2:a:2
    as

    Download full text from publisher

    File URL: https://www.remef.org.mx/index.php/remef/article/view/531
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Merton, Robert C., 1976. "Option pricing when underlying stock returns are discontinuous," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 125-144.
    2. Robert Cox Merton & Francisco Venegas-Martínez, 2021. "Tendencias y perspectivas de la ciencia financiera: Un artículo de revisión," Remef - Revista Mexicana de Economía y Finanzas Nueva Época REMEF (The Mexican Journal of Economics and Finance), Instituto Mexicano de Ejecutivos de Finanzas, IMEF, vol. 16(1), pages 1-15, Enero - M.
    3. Tunaru, Radu & Zheng, Teng, 2017. "Parameter estimation risk in asset pricing and risk management: A Bayesian approach," International Review of Financial Analysis, Elsevier, vol. 53(C), pages 80-93.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mariano González-Sánchez & Eva M. Ibáñez Jiménez & Ana I. Segovia San Juan, 2022. "Market and model risks: a feasible joint estimate methodology," Risk Management, Palgrave Macmillan, vol. 24(3), pages 187-213, September.
    2. Christophe Chorro & Florian Ielpo & Benoît Sévi, 2017. "The contribution of jumps to forecasting the density of returns," Post-Print halshs-01442618, HAL.
    3. Peter Carr & Liuren Wu, 2014. "Static Hedging of Standard Options," Journal of Financial Econometrics, Oxford University Press, vol. 12(1), pages 3-46.
    4. Kathrin Glau & Ricardo Pachon & Christian Potz, 2019. "Speed-up credit exposure calculations for pricing and risk management," Papers 1912.01280, arXiv.org.
    5. Pringles, Rolando & Olsina, Fernando & Penizzotto, Franco, 2020. "Valuation of defer and relocation options in photovoltaic generation investments by a stochastic simulation-based method," Renewable Energy, Elsevier, vol. 151(C), pages 846-864.
    6. Sandrine Lardic & Claire Gauthier, 2003. "Un modèle multifactoriel des spreads de crédit : estimation sur panels complets et incomplets," Économie et Prévision, Programme National Persée, vol. 159(3), pages 53-69.
    7. René Garcia & Richard Luger & Eric Renault, 2000. "Asymmetric Smiles, Leverage Effects and Structural Parameters," Working Papers 2000-57, Center for Research in Economics and Statistics.
    8. Hongzhong Zhang, 2018. "Stochastic Drawdowns," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 10078, September.
    9. Yeap, Claudia & Kwok, Simon S. & Choy, S. T. Boris, 2016. "A Flexible Generalised Hyperbolic Option Pricing Model and its Special Cases," Working Papers 2016-14, University of Sydney, School of Economics.
    10. Chendi Ni & Yuying Li & Peter A. Forsyth, 2023. "Neural Network Approach to Portfolio Optimization with Leverage Constraints:a Case Study on High Inflation Investment," Papers 2304.05297, arXiv.org, revised May 2023.
    11. José Valentim Machado Vicente & Jaqueline Terra Moura Marins, 2019. "A Volatility Smile-Based Uncertainty Index," Working Papers Series 502, Central Bank of Brazil, Research Department.
    12. Mancini, Cecilia, 2008. "Large deviation principle for an estimator of the diffusion coefficient in a jump-diffusion process," Statistics & Probability Letters, Elsevier, vol. 78(7), pages 869-879, May.
    13. Bjork, Tomas, 2009. "Arbitrage Theory in Continuous Time," OUP Catalogue, Oxford University Press, edition 3, number 9780199574742.
    14. Karl Friedrich Mina & Gerald H. L. Cheang & Carl Chiarella, 2015. "Approximate Hedging Of Options Under Jump-Diffusion Processes," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 18(04), pages 1-26.
    15. Khalaf, Lynda & Saphores, Jean-Daniel & Bilodeau, Jean-Francois, 2003. "Simulation-based exact jump tests in models with conditional heteroskedasticity," Journal of Economic Dynamics and Control, Elsevier, vol. 28(3), pages 531-553, December.
    16. Wang, Xiao-Tian & Li, Zhe & Zhuang, Le, 2017. "European option pricing under the Student’s t noise with jumps," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 848-858.
    17. Ciprian Necula & Gabriel Drimus & Walter Farkas, 2019. "A general closed form option pricing formula," Review of Derivatives Research, Springer, vol. 22(1), pages 1-40, April.
    18. Rafal M. Wojakowski & M. Shahid Ebrahim & Aziz Jaafar & Murizah Osman Salleh, 2019. "Can Loan Valuation Adjustment (LVA) approach immunize collateralized debt from defaults?," Financial Markets, Institutions & Instruments, John Wiley & Sons, vol. 28(2), pages 141-158, May.
    19. Tim Bollerslev & Sophia Zhengzi Li & Viktor Todorov, 2014. "Roughing up Beta: Continuous vs. Discontinuous Betas, and the Cross-Section of Expected Stock Returns," CREATES Research Papers 2014-48, Department of Economics and Business Economics, Aarhus University.
    20. Shaw, Charles, 2020. "Regimes, Non-Linearities, and Price Discontinuities in Indian Energy Stocks," MPRA Paper 104798, University Library of Munich, Germany.

    More about this item

    Keywords

    Modelo de Difusión con saltos de Merton (MDSM); estadística bayesiana; MCMC; Modelo de Black & Scholes (B&S); procesos estocásticos;
    All these keywords.

    JEL classification:

    • B23 - Schools of Economic Thought and Methodology - - History of Economic Thought since 1925 - - - Econometrics; Quantitative and Mathematical Studies
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • F37 - International Economics - - International Finance - - - International Finance Forecasting and Simulation: Models and Applications
    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:imx:journl:v:17:y:2022:i:2:a:2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ricardo Mendoza (email available below). General contact details of provider: https://www.remef.org.mx/index.php/remef/index .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.