IDEAS home Printed from https://ideas.repec.org/a/imx/journl/v15y2020isneap589-598.html
   My bibliography  Save this article

How can Big Data contribute to improve the financial performance of companies?

Author

Listed:
  • Cinzia Delfino Barilla

    (Universidad del Pacífico, Lima, Perú)

  • Lucia Lastarria Reynoso

    (Universidad del Pacífico, Lima, Perú)

Abstract

Objetivo: Proponemos una metodología integral que combina un conjunto de herramientas del análisis de Big Data (BDA) con el análisis prospectivo, análisis de riesgo y análisis estratégico con la finalidad de mejorar el desempeño financiero de la empresa medido a través de Key Performance Indicators (KPI)}Metodología: La metodología está compuesta por cinco (5) etapas: modelación financiera, prospectiva, análisis de riesgo que incluye BDA, análisis estratégico y monitoreoResultados: Esta metodología permite dirigir el BDA hacia la caracterización de las variables críticas que crean valor para la empresa, diseñar estrategias contingentes y evaluar su impacto en los indicadores financieros seleccionados (KPI) todo esto de forma multidimensional. Recomendación: Se requiere un monitoreo constante del modelo para generar diferentes formas de innovación y flexibilidad en la empresa y mejorar su desempeño financiero.Limitación: El éxito de la metodología depende de la habilidad de la empresa para mejorar, adaptarse, ajustarse o innovar para ganar, sostener o reconfigurar una ventaja competitiva. A esta habilidad se le denomina capacidades dinámicas orientadas a procesos (PODC) Originalidad: La metodología propuesta es integral ya que permite la inclusión de diversas áreas de la empresa con el objetivo de mejorar su desempeño financiero representado por los KPIs. Asimismo, el análisis se puede realizar para áreas específicas y unidades de negocio. Conclusión: La metodología propuesta promueve la innovación y la flexibilidad que mejorarán el desempeño financiero de la compañía siempre que exista un buen ajuste entre las actividades de Big Data, la estructura organizacional, el compromiso de la alta gerencia y el apoyo para el desarrollo de PODC.

Suggested Citation

  • Cinzia Delfino Barilla & Lucia Lastarria Reynoso, 2020. "How can Big Data contribute to improve the financial performance of companies?," Remef - Revista Mexicana de Economía y Finanzas Nueva Época REMEF (The Mexican Journal of Economics and Finance), Instituto Mexicano de Ejecutivos de Finanzas, IMEF, vol. 15(SNEA), pages 589-598, Agosto 20.
  • Handle: RePEc:imx:journl:v:15:y:2020:i:snea:p:589-598
    as

    Download full text from publisher

    File URL: https://www.remef.org.mx/index.php/remef/article/view/548
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mikalef, Patrick & Boura, Maria & Lekakos, George & Krogstie, John, 2019. "Big data analytics and firm performance: Findings from a mixed-method approach," Journal of Business Research, Elsevier, vol. 98(C), pages 261-276.
    2. Merendino, Alessandro & Dibb, Sally & Meadows, Maureen & Quinn, Lee & Wilson, David & Simkin, Lyndon & Canhoto, Ana, 2018. "Big data, big decisions: The impact of big data on board level decision-making," Journal of Business Research, Elsevier, vol. 93(C), pages 67-78.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mariani, Marcello M. & Fosso Wamba, Samuel, 2020. "Exploring how consumer goods companies innovate in the digital age: The role of big data analytics companies," Journal of Business Research, Elsevier, vol. 121(C), pages 338-352.
    2. Meadows, Maureen & Merendino, Alessandro & Dibb, Sally & Garcia-Perez, Alexeis & Hinton, Matthew & Papagiannidis, Savvas & Pappas, Ilias & Wang, Huamao, 2022. "Tension in the data environment: How organisations can meet the challenge," Technological Forecasting and Social Change, Elsevier, vol. 175(C).
    3. Kim, Jaemin & Dibrell, Clay & Kraft, Ellen & Marshall, David, 2021. "Data analytics and performance: The moderating role of intuition-based HR management in major league baseball," Journal of Business Research, Elsevier, vol. 122(C), pages 204-216.
    4. Lutfi, Abdalwali & Alrawad, Mahmaod & Alsyouf, Adi & Almaiah, Mohammed Amin & Al-Khasawneh, Ahmad & Al-Khasawneh, Akif Lutfi & Alshira'h, Ahmad Farhan & Alshirah, Malek Hamed & Saad, Mohamed & Ibrahim, 2023. "Drivers and impact of big data analytic adoption in the retail industry: A quantitative investigation applying structural equation modeling," Journal of Retailing and Consumer Services, Elsevier, vol. 70(C).
    5. Luther Yuong Qai Chong & Thien Sang Lim, 2022. "Pull and Push Factors of Data Analytics Adoption and Its Mediating Role on Operational Performance," Sustainability, MDPI, vol. 14(12), pages 1-19, June.
    6. Raed A.I. Abueed & Mehmet Aga, 2019. "Sustainable Knowledge Creation and Corporate Outcomes: Does Corporate Data Governance Matter?," Sustainability, MDPI, vol. 11(20), pages 1-15, October.
    7. Harkaran Kava & Konstantina Spanaki & Thanos Papadopoulos & Stella Despoudi & Oscar Rodriguez-Espindola & Masoud Fakhimi, 2021. "Data Analytics Diffusion in the UK Renewable Energy Sector: An Innovation Perspective," Post-Print hal-03781046, HAL.
    8. Christoph Keding, 2021. "Understanding the interplay of artificial intelligence and strategic management: four decades of research in review," Management Review Quarterly, Springer, vol. 71(1), pages 91-134, February.
    9. Andrea Chiarini, 2021. "Industry 4.0 technologies in the manufacturing sector: Are we sure they are all relevant for environmental performance?," Business Strategy and the Environment, Wiley Blackwell, vol. 30(7), pages 3194-3207, November.
    10. Changchun Zhu & Jianguo Du & Fakhar Shahzad & Muhammad Umair Wattoo, 2022. "Environment Sustainability Is a Corporate Social Responsibility: Measuring the Nexus between Sustainable Supply Chain Management, Big Data Analytics Capabilities, and Organizational Performance," Sustainability, MDPI, vol. 14(6), pages 1-20, March.
    11. Yuelin Gao & Kaiguang Wang & Chenyang Gao & Yulong Shen & Teng Li, 2019. "Application of Differential Evolution Algorithm Based on Mixed Penalty Function Screening Criterion in Imbalanced Data Integration Classification," Mathematics, MDPI, vol. 7(12), pages 1-36, December.
    12. Gupta, Shivam & Justy, Théo & Kamboj, Shampy & Kumar, Ajay & Kristoffersen, Eivind, 2021. "Big data and firm marketing performance: Findings from knowledge-based view," Technological Forecasting and Social Change, Elsevier, vol. 171(C).
    13. Jiang, Kangqi & Du, Xinyi & Chen, Zhongfei, 2022. "Firms' digitalization and stock price crash risk," International Review of Financial Analysis, Elsevier, vol. 82(C).
    14. Canhoto, Ana Isabel & Clear, Fintan, 2020. "Artificial intelligence and machine learning as business tools: A framework for diagnosing value destruction potential," Business Horizons, Elsevier, vol. 63(2), pages 183-193.
    15. Shah, Tushar R., 2022. "Can big data analytics help organisations achieve sustainable competitive advantage? A developmental enquiry," Technology in Society, Elsevier, vol. 68(C).
    16. Steven März & Anja Bierwirth & Ralf Schüle, 2020. "Mixed-Method Research to Foster Energy Efficiency Investments by Small Private Landlords in Germany," Sustainability, MDPI, vol. 12(5), pages 1-18, February.
    17. Souiden, Nizar & Amara, Nabil & Chaouali, Walid, 2020. "Optimal image mix cues and their impacts on consumers’ purchase intention," Journal of Retailing and Consumer Services, Elsevier, vol. 54(C).
    18. Maria Petrescu & Anjala S. Krishen, 2019. "Strength in diversity: methods and analytics," Journal of Marketing Analytics, Palgrave Macmillan, vol. 7(4), pages 203-204, December.
    19. Morimura, Fumikazu & Sakagawa, Yuji, 2023. "The intermediating role of big data analytics capability between responsive and proactive market orientations and firm performance in the retail industry," Journal of Retailing and Consumer Services, Elsevier, vol. 71(C).
    20. Maya Vachkova & Arsalan Ghouri & Haidy Ashour & Normalisa Binti Md Isa & Gregory Barnes, 2023. "Big data and predictive analytics and Malaysian micro-, small and medium businesses," SN Business & Economics, Springer, vol. 3(8), pages 1-28, August.

    More about this item

    Keywords

    Gestión de tecnología de la información; análisis de Big Data;

    JEL classification:

    • M15 - Business Administration and Business Economics; Marketing; Accounting; Personnel Economics - - Business Administration - - - IT Management
    • M14 - Business Administration and Business Economics; Marketing; Accounting; Personnel Economics - - Business Administration - - - Corporate Culture; Diversity; Social Responsibility

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:imx:journl:v:15:y:2020:i:snea:p:589-598. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ricardo Mendoza (email available below). General contact details of provider: https://www.remef.org.mx/index.php/remef/index .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.