IDEAS home Printed from https://ideas.repec.org/a/igg/jisscm/v16y2023i1p1-16.html
   My bibliography  Save this article

Research on Improvement of Hotel Supply Chain Resource Management Decision in the Era of Big Data

Author

Listed:
  • Qing Yuan

    (Zhengzhou College of Finance and Economics, China)

Abstract

Hotel supply chain management (SCM) refers to the material service that takes a hotel as the core object. At present, the main method is centralized SCM, which uses integer programming or mixed integer programming to establish and solve the allocation management of various resources among hotels in the supply chain. In this article, based on ant colony algorithm (ACA), the hotel SCM mode is studied and optimized. The research shows that the convergence path is A-S4-M3-L3-D1-R1-T. Therefore, the optimal partner combination meeting the requirements of the supply chain is S4, M3, L3, D1 and R1. The experiment shows that the max-min ACA is effective to solve the problem of partner selection in hotel supply chain. By using enterprise management technology, information technology, network technology and SCM technology under ACA, the effective rules and control of information flow, logistics, capital flow, business flow and value flow in the whole supply chain can be achieved, and the maximum benefit of the whole hotel supply chain can be realized.

Suggested Citation

  • Qing Yuan, 2023. "Research on Improvement of Hotel Supply Chain Resource Management Decision in the Era of Big Data," International Journal of Information Systems and Supply Chain Management (IJISSCM), IGI Global, vol. 16(1), pages 1-16, January.
  • Handle: RePEc:igg:jisscm:v:16:y:2023:i:1:p:1-16
    as

    Download full text from publisher

    File URL: http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJISSCM.330643
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ziqi Wang & Peihan Wen, 2020. "Optimization of a Low-Carbon Two-Echelon Heterogeneous-Fleet Vehicle Routing for Cold Chain Logistics under Mixed Time Window," Sustainability, MDPI, vol. 12(5), pages 1-22, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rafidah Md Noor & Nadia Bella Gustiani Rasyidi & Tarak Nandy & Raenu Kolandaisamy, 2020. "Campus Shuttle Bus Route Optimization Using Machine Learning Predictive Analysis: A Case Study," Sustainability, MDPI, vol. 13(1), pages 1-24, December.
    2. Demir, Sercan & Aktas, Ersin & Paksoy, Turan, 2021. "Cold chain logistics: The case of Turkish Airlines vaccine distribution," Chapters from the Proceedings of the Hamburg International Conference of Logistics (HICL), in: Kersten, Wolfgang & Ringle, Christian M. & Blecker, Thorsten (ed.), Adapting to the Future: How Digitalization Shapes Sustainable Logistics and Resilient Supply Chain Management. Proceedings of the Hamburg Internationa, volume 31, pages 771-798, Hamburg University of Technology (TUHH), Institute of Business Logistics and General Management.
    3. Abdul Salam Khan & Bashir Salah & Dominik Zimon & Muhammad Ikram & Razaullah Khan & Catalin I. Pruncu, 2020. "A Sustainable Distribution Design for Multi-Quality Multiple-Cold-Chain Products: An Integrated Inspection Strategies Approach," Energies, MDPI, vol. 13(24), pages 1-25, December.
    4. Sluijk, Natasja & Florio, Alexandre M. & Kinable, Joris & Dellaert, Nico & Van Woensel, Tom, 2023. "Two-echelon vehicle routing problems: A literature review," European Journal of Operational Research, Elsevier, vol. 304(3), pages 865-886.
    5. Feiyue Qiu & Guodao Zhang & Ping-Kuo Chen & Cheng Wang & Yi Pan & Xin Sheng & Dewei Kong, 2020. "A Novel Multi-Objective Model for the Cold Chain Logistics Considering Multiple Effects," Sustainability, MDPI, vol. 12(19), pages 1-28, September.
    6. Bowen Hou & Yang Cao & Dongye Lv & Shuzhi Zhao, 2020. "Transit-Based Evacuation for Urban Rail Transit Line Emergency," Sustainability, MDPI, vol. 12(9), pages 1-18, May.
    7. Yuntao Bai & Yuan Gao & Delong Li & Dehai Liu, 2022. "Coordinated Distribution or Client Introduce? Analysis of Energy Conservation and Emission Reduction in Canadian Logistics Enterprises," Sustainability, MDPI, vol. 14(24), pages 1-14, December.
    8. Lihua Liu & Aneng He & Tian Tian & Lai Soon Lee & Hsin-Vonn Seow, 2024. "Bi-Objective Mixed Integer Nonlinear Programming Model for Low Carbon Location-Inventory-Routing Problem with Time Windows and Customer Satisfaction," Mathematics, MDPI, vol. 12(15), pages 1-35, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:igg:jisscm:v:16:y:2023:i:1:p:1-16. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Journal Editor (email available below). General contact details of provider: https://www.igi-global.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.