IDEAS home Printed from https://ideas.repec.org/a/igg/jiit00/v17y2021i3p1-17.html
   My bibliography  Save this article

Performance Evaluation of Machine Learning for Recognizing Human Facial Emotions

Author

Listed:
  • Alti Adel

    (LRSD Laboratory, Department of Computer Science, Faculty of Sciences, University of Ferhat Abbas SETIF-1, Sétif, Algeria)

  • Ayeche Farid

    (LMETR - E1764200, Optics and Precision Mechanics Institute, University of Setif 1, Algeria)

Abstract

Facial expression recognition is a human emotion classification problem attracting much attention from scientific research. Classifying human emotions can be a challenging task for machines. However, more accurate results and less execution time are still the issues when extracting features of human emotions. To cope with these challenges, the authors propose an automatic system that provides users with a well-adopted classifier for recognizing facial expressions in a more accurate manner. The system is based on two fundamental machine learning stages, namely feature selection and feature classification. Feature selection is realized by active shape model (ASM) composed of landmarks while the feature classification algorithm is based on seven well-known classifiers. The authors have used CK+ dataset, implemented and tested seven classifiers to find the best classifier. The experimental results show that quadratic classifier (DA) provides excellent performance, and it outperforms the other classifiers with the highest recognition rate of 100% for the same dataset.

Suggested Citation

  • Alti Adel & Ayeche Farid, 2021. "Performance Evaluation of Machine Learning for Recognizing Human Facial Emotions," International Journal of Intelligent Information Technologies (IJIIT), IGI Global, vol. 17(3), pages 1-17, July.
  • Handle: RePEc:igg:jiit00:v:17:y:2021:i:3:p:1-17
    as

    Download full text from publisher

    File URL: http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJIIT.2021070105
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jos Berge, 1977. "Orthogonal procrustes rotation for two or more matrices," Psychometrika, Springer;The Psychometric Society, vol. 42(2), pages 267-276, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Joost Ginkel & Pieter Kroonenberg, 2014. "Using Generalized Procrustes Analysis for Multiple Imputation in Principal Component Analysis," Journal of Classification, Springer;The Classification Society, vol. 31(2), pages 242-269, July.
    2. Meyners, Michael & Qannari, El Mostafa, 2001. "Relating principal component analysis on merged data sets to a regression approach," Technical Reports 2001,47, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    3. Bijmolt, T.H.A. & Wedel, M., 1996. "A Monte Carlo Evaluation of Maximum Likelihood Multidimensional Scaling Methods," Other publications TiSEM f72cc9d8-f370-43aa-a224-4, Tilburg University, School of Economics and Management.
    4. Dahl, Tobias & Naes, Tormod, 2006. "A bridge between Tucker-1 and Carroll's generalized canonical analysis," Computational Statistics & Data Analysis, Elsevier, vol. 50(11), pages 3086-3098, July.
    5. Kensuke Okada & Shin-ichi Mayekawa, 2018. "Post-processing of Markov chain Monte Carlo output in Bayesian latent variable models with application to multidimensional scaling," Computational Statistics, Springer, vol. 33(3), pages 1457-1473, September.
    6. Bijmolt, T.H.A. & Wedel, M., 1996. "A Monte Carlo Evaluation of Maximum Likelihood Multidimensional Scaling Methods," Research Memorandum 725, Tilburg University, School of Economics and Management.
    7. Meyners, M. & Kunert, Joachim & Qannari, El Mostafa, 1998. "Comparing Generalized Procrustes Analysis and STATIS," Technical Reports 1998,35, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    8. Tom Frans Wilderjans & Eva Gaer & Henk A. L. Kiers & Iven Mechelen & Eva Ceulemans, 2017. "Principal Covariates Clusterwise Regression (PCCR): Accounting for Multicollinearity and Population Heterogeneity in Hierarchically Organized Data," Psychometrika, Springer;The Psychometric Society, vol. 82(1), pages 86-111, March.
    9. Mohammed Bennani Dosse & Jos Berge, 2010. "Anisotropic Orthogonal Procrustes Analysis," Journal of Classification, Springer;The Classification Society, vol. 27(1), pages 111-128, March.
    10. Meyners, Michael, 2002. "Methods to analyse sensory profiling data - a comparison," Technical Reports 2002,58, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    11. Renate S M Buisman & Katharina Pittner & Marieke S Tollenaar & Jolanda Lindenberg & Lisa J M van den Berg & Laura H C G Compier-de Block & Joost R van Ginkel & Lenneke R A Alink & Marian J Bakermans-K, 2020. "Intergenerational transmission of child maltreatment using a multi-informant multi-generation family design," PLOS ONE, Public Library of Science, vol. 15(3), pages 1-23, March.
    12. James Lingoes & Ingwer Borg, 1978. "A direct approach to individual differences scaling using increasingly complex transformations," Psychometrika, Springer;The Psychometric Society, vol. 43(4), pages 491-519, December.
    13. Bennani Dosse, Mohammed & Kiers, Henk A.L. & Ten Berge, Jos M.F., 2011. "Anisotropic generalized Procrustes analysis," Computational Statistics & Data Analysis, Elsevier, vol. 55(5), pages 1961-1968, May.
    14. Angela Andreella & Riccardo Santis & Anna Vesely & Livio Finos, 2023. "Procrustes-based distances for exploring between-matrices similarity," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 32(3), pages 867-882, September.
    15. Rik Pieters & Hans Baumgartner, 2002. "Who Talks to Whom? Intra- and Interdisciplinary Communication of Economics Journals," Journal of Economic Literature, American Economic Association, vol. 40(2), pages 483-509, June.
    16. Kohei Adachi, 2013. "Generalized joint Procrustes analysis," Computational Statistics, Springer, vol. 28(6), pages 2449-2464, December.
    17. Justin L. Kern, 2017. "On the Correspondence Between Procrustes Analysis and Bidimensional Regression," Journal of Classification, Springer;The Classification Society, vol. 34(1), pages 35-48, April.
    18. Jos Berge & Dirk Knol, 1984. "Orthogonal rotations to maximal agreement for two or more matrices of different column orders," Psychometrika, Springer;The Psychometric Society, vol. 49(1), pages 49-55, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:igg:jiit00:v:17:y:2021:i:3:p:1-17. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Journal Editor (email available below). General contact details of provider: https://www.igi-global.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.