IDEAS home Printed from https://ideas.repec.org/a/ibn/masjnl/v7y2013i4p17.html
   My bibliography  Save this article

Weighted Regression Method for the Study of Pedestrian Flow Characteristics in Dhaka, Bangladesh

Author

Listed:
  • Khalidur Rahman
  • Noraida Abdul Ghani
  • Anton Abdulbasah Kamil
  • Adli Mustafa

Abstract

The proper estimation of pedestrian speed-flow-density relationships is of vital importance, because such relationships play an important role in developing useful tools for analysing and improving pedestrian facilities in terms of efficiency and safety. One of the major problems with previous macroscopic studies of pedestrian flow characteristics is that the relationships were established based on a model with specification errors that had been estimated by ordinary least squares (OLS). Thus, the validity of the relationships and conclusions drawn from those studies is open to question and should be examined further. In this study, pedestrian speed-flow-density relationships in Dhaka, Bangladesh, are estimated using a weighted regression method. The flows and speeds generated by the derived flow-density and speed-flow relationships based on the weighted regression method and the OLS method, separately, are compared with empirical values. The root mean square error is used as an evaluation criterion. In addition, the pedestrian characteristics of Dhaka are compared with those of other studies. The results indicate the existence of a probable bias in previous studies and an improvement in predictive power with the use of the weighted regression method. Pedestrian flows on the sidewalks in Dhaka have some particular characteristics that are not similar to the uninterrupted pedestrian flows in other countries. Since the weighted regression estimation techniques can mitigate a part of the OLS bias, such techniques could be incorporated in simulation packages to predict pedestrian flows and speeds as well as to design and analyse the capacity of a pedestrian facility precisely. The study also recommends refraining from the direct adoption of foreign design and parameters for pedestrian facilities in Dhaka.

Suggested Citation

  • Khalidur Rahman & Noraida Abdul Ghani & Anton Abdulbasah Kamil & Adli Mustafa, 2013. "Weighted Regression Method for the Study of Pedestrian Flow Characteristics in Dhaka, Bangladesh," Modern Applied Science, Canadian Center of Science and Education, vol. 7(4), pages 1-17, April.
  • Handle: RePEc:ibn:masjnl:v:7:y:2013:i:4:p:17
    as

    Download full text from publisher

    File URL: https://ccsenet.org/journal/index.php/mas/article/download/24404/15791
    Download Restriction: no

    File URL: https://ccsenet.org/journal/index.php/mas/article/view/24404
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mitchell, David H. & MacGregor Smith, J., 2001. "Topological network design of pedestrian networks," Transportation Research Part B: Methodological, Elsevier, vol. 35(2), pages 107-135, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mehrdad Moshtagh & Jafar Fathali & James MacGregor Smith & Nezam Mahdavi-Amiri, 2019. "Finding an optimal core on a tree network with M/G/c/c state-dependent queues," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 89(1), pages 115-142, February.
    2. Drezner, Zvi & Wesolowsky, George O., 2003. "Network design: selection and design of links and facility location," Transportation Research Part A: Policy and Practice, Elsevier, vol. 37(3), pages 241-256, March.
    3. MacGregor Smith, J. & Cruz, F.R.B., 2014. "M/G/c/c state dependent travel time models and properties," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 395(C), pages 560-579.
    4. Yue, Hao & Guan, Hongzhi & Zhang, Juan & Shao, Chunfu, 2010. "Study on bi-direction pedestrian flow using cellular automata simulation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(3), pages 527-539.
    5. Hu, Lu & Jiang, Yangsheng & Zhu, Juanxiu & Chen, Yanru, 2015. "A PH/PH(n)/C/C state-dependent queuing model for metro station corridor width design," European Journal of Operational Research, Elsevier, vol. 240(1), pages 109-126.
    6. Veenstra, A.W. & Mulder, H.M. & Sels, R.A., 2003. "Network analysis in the Caribbean," Econometric Institute Research Papers EI 2003-40, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    7. Zhu, Juanxiu & Hu, Lu & Jiang, Yangsheng & Khattak, Afaq, 2017. "Circulation network design for urban rail transit station using a PH(n)/PH(n)/C/C queuing network model," European Journal of Operational Research, Elsevier, vol. 260(3), pages 1043-1068.
    8. Ryan Palmer & Martin Utley, 2020. "On the modelling and performance measurement of service networks with heterogeneous customers," Annals of Operations Research, Springer, vol. 293(1), pages 237-268, October.
    9. Cruz, F.R.B. & van Woensel, T. & MacGregor Smith, J. & Lieckens, K., 2010. "On the system optimum of traffic assignment in M/G/c/c state-dependent queueing networks," European Journal of Operational Research, Elsevier, vol. 201(1), pages 183-193, February.
    10. Wu, Aoping & Hu, Lu & Li, Dongjie & Zhu, Juanxiu & Shang, Pan, 2024. "A Queue-SEIAR model: Revealing the transmission mechanism of epidemics in a metro line from a meso level," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 190(C).
    11. Hu, Lu & Zhao, Bin & Zhu, Juanxiu & Jiang, Yangsheng, 2019. "Two time-varying and state-dependent fluid queuing models for traffic circulation systems," European Journal of Operational Research, Elsevier, vol. 275(3), pages 997-1019.
    12. Carlos Pestana Barros & J. Augusto Felício & Renato Leite Fernandes, 2012. "Productivity analysis of Brazilian seaports," Maritime Policy & Management, Taylor & Francis Journals, vol. 39(5), pages 503-523, September.
    13. Jasmine Siu Lee Lam & Jing Dai, 2012. "A decision support system for port selection," Transportation Planning and Technology, Taylor & Francis Journals, vol. 35(4), pages 509-524, January.
    14. Tzay-An Shiau & Chia-Chin Chuang, 2015. "Social construction of port sustainability indicators: a case study of Keelung Port," Maritime Policy & Management, Taylor & Francis Journals, vol. 42(1), pages 26-42, January.

    More about this item

    JEL classification:

    • R00 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General - - - General
    • Z0 - Other Special Topics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ibn:masjnl:v:7:y:2013:i:4:p:17. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Canadian Center of Science and Education (email available below). General contact details of provider: https://edirc.repec.org/data/cepflch.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.