IDEAS home Printed from https://ideas.repec.org/a/ibn/masjnl/v5y2011i4p95.html
   My bibliography  Save this article

Facility Layout Simulation and Optimization: an Integration of Advanced Quality and Decision Making tools and Techniques

Author

Listed:
  • Arash Shahin
  • Mehdi Poormostafa

Abstract

The purpose of this paper is to propose an integrated approach of simulation, fuzzy analytic hierarchy process and Quality Function Deployment (QFD) and Multiple Criteria Decision Making (MCDM) for facility layout design improvement and optimization. Computer simulation has been used to determine quantitative measures. Analytical Hierarchy Process (AHP) has also been used to determine the weight of qualitative measures for layout alternatives. Non equal weights have been derived with respect to the quantitative and qualitative criteria. QFD has been used to determine weights of criteria and the importance of the alternatives in relation to quantitative and qualitative measures. Finally, Topsis approach has been used for ranking the alternatives and identifying the best alternative. The results imply that the proposed methodology is more reliable compared to existing approaches. In addition, the methodology requires managers' concentration on Facility Layout Problem (FLP). This paper provides organizations a way to devise and refine adequate criteria and alleviate the risk of selecting optimal solutions.

Suggested Citation

  • Arash Shahin & Mehdi Poormostafa, 2011. "Facility Layout Simulation and Optimization: an Integration of Advanced Quality and Decision Making tools and Techniques," Modern Applied Science, Canadian Center of Science and Education, vol. 5(4), pages 1-95, August.
  • Handle: RePEc:ibn:masjnl:v:5:y:2011:i:4:p:95
    as

    Download full text from publisher

    File URL: https://ccsenet.org/journal/index.php/mas/article/download/10520/8271
    Download Restriction: no

    File URL: https://ccsenet.org/journal/index.php/mas/article/view/10520
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kusiak, Andrew & Heragu, Sunderesh S., 1987. "The facility layout problem," European Journal of Operational Research, Elsevier, vol. 29(3), pages 229-251, June.
    2. Vaidya, Omkarprasad S. & Kumar, Sushil, 2006. "Analytic hierarchy process: An overview of applications," European Journal of Operational Research, Elsevier, vol. 169(1), pages 1-29, February.
    3. Yang, Taho & Kuo, Chunwei, 2003. "A hierarchical AHP/DEA methodology for the facilities layout design problem," European Journal of Operational Research, Elsevier, vol. 147(1), pages 128-136, May.
    4. Lin, Lie Chien & Sharp, Gunter P., 1999. "Quantitative and qualitative indices for the plant layout evaluation problem," European Journal of Operational Research, Elsevier, vol. 116(1), pages 100-117, July.
    5. Cheng, Ching-Hsue, 1997. "Evaluating naval tactical missile systems by fuzzy AHP based on the grade value of membership function," European Journal of Operational Research, Elsevier, vol. 96(2), pages 343-350, January.
    6. Wang, Ying-Ming & Luo, Ying & Hua, Zhongsheng, 2008. "On the extent analysis method for fuzzy AHP and its applications," European Journal of Operational Research, Elsevier, vol. 186(2), pages 735-747, April.
    7. Kahraman, Cengiz & Cebeci, Ufuk & Ruan, Da, 2004. "Multi-attribute comparison of catering service companies using fuzzy AHP: The case of Turkey," International Journal of Production Economics, Elsevier, vol. 87(2), pages 171-184, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Ying-Ming & Luo, Ying & Hua, Zhongsheng, 2008. "On the extent analysis method for fuzzy AHP and its applications," European Journal of Operational Research, Elsevier, vol. 186(2), pages 735-747, April.
    2. Nitidetch Koohathongsumrit & Pongchanun Luangpaiboon, 2022. "An integrated FAHP–ZODP approach for strategic marketing information system project selection," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 43(6), pages 1792-1809, September.
    3. repec:jle:journl:132 is not listed on IDEAS
    4. Seyed Saeed Hosseinian & Hamidreza Navidi & Abas Hajfathaliha, 2012. "A New Linear Programming Method for Weights Generation and Group Decision Making in the Analytic Hierarchy Process," Group Decision and Negotiation, Springer, vol. 21(3), pages 233-254, May.
    5. Lin, Ming-Ian & Lee, Yuan-Duen & Ho, Tsai-Neng, 2011. "Applying integrated DEA/AHP to evaluate the economic performance of local governments in China," European Journal of Operational Research, Elsevier, vol. 209(2), pages 129-140, March.
    6. Burak, Selmin & Samanlioglu, Funda & Ülker, Duygu, 2022. "Evaluation of irrigation methods in Söke Plain with HF-AHP-PROMETHEE II hybrid MCDM method," Agricultural Water Management, Elsevier, vol. 271(C).
    7. Mohammad Pakkar, 2015. "An integrated approach based on DEA and AHP," Computational Management Science, Springer, vol. 12(1), pages 153-169, January.
    8. V. Alpagut Yavuz, 2016. "An Analysis of Job Change Decision Using a Hybrid Mcdm Method: A Comparative Analysis," International Journal of Business and Social Research, LAR Center Press, vol. 6(3), pages 60-75, March.
    9. Garbuzova-Schlifter, Maria & Madlener, Reinhard, 2016. "AHP-based risk analysis of energy performance contracting projects in Russia," Energy Policy, Elsevier, vol. 97(C), pages 559-581.
    10. Alfonso Maria Ponsiglione & Francesco Amato & Santolo Cozzolino & Giuseppe Russo & Maria Romano & Giovanni Improta, 2022. "A Hybrid Analytic Hierarchy Process and Likert Scale Approach for the Quality Assessment of Medical Education Programs," Mathematics, MDPI, vol. 10(9), pages 1-20, April.
    11. Heo, Eunnyeong & Kim, Jinsoo & Boo, Kyung-Jin, 2010. "Analysis of the assessment factors for renewable energy dissemination program evaluation using fuzzy AHP," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(8), pages 2214-2220, October.
    12. Akash Tayal & Angappa Gunasekaran & Surya Prakash Singh & Rameshwar Dubey & Thanos Papadopoulos, 2017. "Formulating and solving sustainable stochastic dynamic facility layout problem: a key to sustainable operations," Annals of Operations Research, Springer, vol. 253(1), pages 621-655, June.
    13. Kim, Juhan & Lee, Jungbae & Kim, BumChoong & Kim, Jinsoo, 2019. "Raw material criticality assessment with weighted indicators: An application of fuzzy analytic hierarchy process," Resources Policy, Elsevier, vol. 60(C), pages 225-233.
    14. V. Alpagut Yavuz, 2016. "An Analysis of Job Change Decision Using a Hybrid Mcdm Method: A Comparative Analysis," International Journal of Business and Social Research, MIR Center for Socio-Economic Research, vol. 6(3), pages 60-75, March.
    15. Ho, William, 2008. "Integrated analytic hierarchy process and its applications - A literature review," European Journal of Operational Research, Elsevier, vol. 186(1), pages 211-228, April.
    16. Ormerod, Richard J. & Ulrich, Werner, 2013. "Operational research and ethics: A literature review," European Journal of Operational Research, Elsevier, vol. 228(2), pages 291-307.
    17. Ruchi Mishra & Rajesh Kr Singh & Venkatesh Mani, 2023. "A hybrid multi criteria decision-making framework to facilitate omnichannel adoption in logistics: an empirical case study," Annals of Operations Research, Springer, vol. 326(2), pages 685-719, July.
    18. Paweł Karczmarek & Witold Pedrycz & Adam Kiersztyn, 2021. "Fuzzy Analytic Hierarchy Process in a Graphical Approach," Group Decision and Negotiation, Springer, vol. 30(2), pages 463-481, April.
    19. Bock, Stefan & Hoberg, Kai, 2007. "Detailed layout planning for irregularly-shaped machines with transportation path design," European Journal of Operational Research, Elsevier, vol. 177(2), pages 693-718, March.
    20. Balci, Gökcay & Cetin, Ismail Bilge & Esmer, Soner, 2018. "An evaluation of competition and selection criteria between dry bulk terminals in Izmir," Journal of Transport Geography, Elsevier, vol. 69(C), pages 294-304.
    21. Jana Krejčí & Alessio Ishizaka, 2018. "FAHPSort: A Fuzzy Extension of the AHPSort Method," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 17(04), pages 1119-1145, July.

    More about this item

    JEL classification:

    • R00 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General - - - General
    • Z0 - Other Special Topics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ibn:masjnl:v:5:y:2011:i:4:p:95. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Canadian Center of Science and Education (email available below). General contact details of provider: https://edirc.repec.org/data/cepflch.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.