IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i3p1116-d1580047.html
   My bibliography  Save this article

Optimizing Tourist Destination Selection Using AHP and Fuzzy AHP Based on Individual Preferences for Personalized Tourism

Author

Listed:
  • Parida Jewpanya

    (Department of Industrial Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai 50200, Thailand)

  • Pinit Nuangpirom

    (Department of Technical Education and Technology, Rajamangala University of Technology Lanna, Chiang Mai 50300, Thailand)

  • Warisa Nakkiew

    (Department of Industrial Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai 50200, Thailand)

  • Siwasit Pitjamit

    (Department of Industrial Engineering, Faculty of Engineering, Rajamangala University of Technology Lanna, Tak 63000, Thailand)

  • Pakpoom Jaichomphu

    (Department of Industrial Engineering, Faculty of Engineering, Rajamangala University of Technology Lanna, Tak 63000, Thailand)

Abstract

Tourism is a dynamic industry that significantly contributes to the global economy, driven by the increasingly diverse preferences of tourists. Addressing these preferences requires sophisticated decision-making models capable of handling the uncertainty and subjectivity of human judgments. This study proposes sustainable models for effectively capturing and evaluating individual tourist preferences using the Analytic Hierarchy Process (AHP) and the Fuzzy Analytic Hierarchy Process (Fuzzy AHP). These models leverage the strengths of the AHP to construct a flexible decision-making framework that adapts to diverse tourist preferences, offering personalized recommendations. In this study, three main criteria are considered: types of tourism, tourism facilities, and tourism areas. Tourists are encouraged to provide their preferences for these criteria and sub-criteria, enabling the AHP and Fuzzy AHP to recommend suitable destinations. An analysis was conducted with 30 respondents providing pairwise comparisons of the tourism criteria, which were then used to generate tourist attraction recommendations using both the AHP and Fuzzy AHP. The study assessed respondents’ satisfaction with the recommendations, finding that both methods were effective, with a slight preference for the Fuzzy AHP due to its ability to better capture individual preferences. The results underscore the potential of these models in sustainably enhancing decision support systems in the tourism industry, offering tailored recommendations that align more closely with tourist expectations.

Suggested Citation

  • Parida Jewpanya & Pinit Nuangpirom & Warisa Nakkiew & Siwasit Pitjamit & Pakpoom Jaichomphu, 2025. "Optimizing Tourist Destination Selection Using AHP and Fuzzy AHP Based on Individual Preferences for Personalized Tourism," Sustainability, MDPI, vol. 17(3), pages 1-19, January.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:3:p:1116-:d:1580047
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/3/1116/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/3/1116/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chitranshu Khandelwal & Mukesh Kumar Barua, 2024. "Prioritizing Circular Supply Chain Management Barriers Using Fuzzy AHP: Case of the Indian Plastic Industry," Global Business Review, International Management Institute, vol. 25(1), pages 232-251, February.
    2. Heo, Eunnyeong & Kim, Jinsoo & Boo, Kyung-Jin, 2010. "Analysis of the assessment factors for renewable energy dissemination program evaluation using fuzzy AHP," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(8), pages 2214-2220, October.
    3. Ali Göksu & Seniye Erdinç Kaya, 2014. "Ranking Of Tourist Destinations With Multi-Criteria Decision Making Methods In Bosnia And Herzegovina," Economic Review: Journal of Economics and Business, University of Tuzla, Faculty of Economics, vol. 12(2), pages 91-103.
    4. Chang, Da-Yong, 1996. "Applications of the extent analysis method on fuzzy AHP," European Journal of Operational Research, Elsevier, vol. 95(3), pages 649-655, December.
    5. Kahraman, Cengiz & Cebeci, Ufuk & Ruan, Da, 2004. "Multi-attribute comparison of catering service companies using fuzzy AHP: The case of Turkey," International Journal of Production Economics, Elsevier, vol. 87(2), pages 171-184, January.
    6. Vaidya, Omkarprasad S. & Kumar, Sushil, 2006. "Analytic hierarchy process: An overview of applications," European Journal of Operational Research, Elsevier, vol. 169(1), pages 1-29, February.
    7. Zhu, Ke-Jun & Jing, Yu & Chang, Da-Yong, 1999. "A discussion on Extent Analysis Method and applications of fuzzy AHP," European Journal of Operational Research, Elsevier, vol. 116(2), pages 450-456, July.
    8. Weck, M. & Klocke, F. & Schell, H. & Ruenauver, E., 1997. "Evaluating alternative production cycles using the extended fuzzy AHP method," European Journal of Operational Research, Elsevier, vol. 100(2), pages 351-366, July.
    9. Bojan Srdjevic & Yvonilde Medeiros, 2008. "Fuzzy AHP Assessment of Water Management Plans," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 22(7), pages 877-894, July.
    10. Irina Canco & Drita Kruja & Tiberiu Iancu, 2021. "AHP, a Reliable Method for Quality Decision Making: A Case Study in Business," Sustainability, MDPI, vol. 13(24), pages 1-14, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Ying-Ming & Luo, Ying & Hua, Zhongsheng, 2008. "On the extent analysis method for fuzzy AHP and its applications," European Journal of Operational Research, Elsevier, vol. 186(2), pages 735-747, April.
    2. Cho, Sangmin & Kim, Jinsoo & Heo, Eunnyeong, 2015. "Application of fuzzy analytic hierarchy process to select the optimal heating facility for Korean horticulture and stockbreeding sectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 1075-1083.
    3. Alfonso Maria Ponsiglione & Francesco Amato & Santolo Cozzolino & Giuseppe Russo & Maria Romano & Giovanni Improta, 2022. "A Hybrid Analytic Hierarchy Process and Likert Scale Approach for the Quality Assessment of Medical Education Programs," Mathematics, MDPI, vol. 10(9), pages 1-20, April.
    4. Heo, Eunnyeong & Kim, Jinsoo & Boo, Kyung-Jin, 2010. "Analysis of the assessment factors for renewable energy dissemination program evaluation using fuzzy AHP," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(8), pages 2214-2220, October.
    5. Rujee Rodcha & Nitin K. Tripathi & Rajendra Prasad Shrestha, 2019. "Comparison of Cash Crop Suitability Assessment Using Parametric, AHP, and FAHP Methods," Land, MDPI, vol. 8(5), pages 1-22, May.
    6. Grošelj, Petra & Hodges, Donald G. & Zadnik Stirn, Lidija, 2016. "Participatory and multi-criteria analysis for forest (ecosystem) management: A case study of Pohorje, Slovenia," Forest Policy and Economics, Elsevier, vol. 71(C), pages 80-86.
    7. Mohammad Sadeghravesh & Hassan Khosravi & Soudeh Ghasemian, 2015. "Application of fuzzy analytical hierarchy process for assessment of combating-desertification alternatives in central Iran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(1), pages 653-667, January.
    8. Wei-Ming Wang & Hsiao-Han Peng, 2020. "A Fuzzy Multi-Criteria Evaluation Framework for Urban Sustainable Development," Mathematics, MDPI, vol. 8(3), pages 1-22, March.
    9. Balci, Gökcay & Cetin, Ismail Bilge & Esmer, Soner, 2018. "An evaluation of competition and selection criteria between dry bulk terminals in Izmir," Journal of Transport Geography, Elsevier, vol. 69(C), pages 294-304.
    10. Kahraman, Cengiz & Cebeci, Ufuk & Ruan, Da, 2004. "Multi-attribute comparison of catering service companies using fuzzy AHP: The case of Turkey," International Journal of Production Economics, Elsevier, vol. 87(2), pages 171-184, January.
    11. María Carmen Carnero, 2015. "Assessment of Environmental Sustainability in Health Care Organizations," Sustainability, MDPI, vol. 7(7), pages 1-22, June.
    12. Kreng, Victor B. & Wu, Chao-Yi, 2007. "Evaluation of knowledge portal development tools using a fuzzy AHP approach: The case of Taiwanese stone industry," European Journal of Operational Research, Elsevier, vol. 176(3), pages 1795-1810, February.
    13. BumChoong Kim & Juhan Kim & Jinsoo Kim, 2019. "Evaluation Model for Investment in Solar Photovoltaic Power Generation Using Fuzzy Analytic Hierarchy Process," Sustainability, MDPI, vol. 11(10), pages 1-23, May.
    14. Chen-Hui Chou & Gin-Shuh Liang & Hung-Chung Chang, 2013. "A fuzzy AHP approach based on the concept of possibility extent," Quality & Quantity: International Journal of Methodology, Springer, vol. 47(1), pages 1-14, January.
    15. Kim, Juhan & Lee, Jungbae & Kim, BumChoong & Kim, Jinsoo, 2019. "Raw material criticality assessment with weighted indicators: An application of fuzzy analytic hierarchy process," Resources Policy, Elsevier, vol. 60(C), pages 225-233.
    16. Dušan M. Milošević & Mimica R. Milošević & Dušan J. Simjanović, 2020. "Implementation of Adjusted Fuzzy AHP Method in the Assessment for Reuse of Industrial Buildings," Mathematics, MDPI, vol. 8(10), pages 1-24, October.
    17. Sajid Ali & Sang-Moon Lee & Choon-Man Jang, 2017. "Determination of the Most Optimal On-Shore Wind Farm Site Location Using a GIS-MCDM Methodology: Evaluating the Case of South Korea," Energies, MDPI, vol. 10(12), pages 1-22, December.
    18. Bojan Srdjevic & Yvonilde Medeiros, 2008. "Fuzzy AHP Assessment of Water Management Plans," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 22(7), pages 877-894, July.
    19. Deng, Yanfei & Xu, Jiuping & Liu, Ying & Mancl, Karen, 2014. "Biogas as a sustainable energy source in China: Regional development strategy application and decision making," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 294-303.
    20. Ricardo Echeverri Mart nez & Eduardo Caicedo Bravo & Wilfredo Alfonso Morales & Juan David Garcia-Racines, 2020. "A Bi-level Multi-objective Optimization Model for the Planning, Design and Operation of Smart Grid Projects. Case Study: An Islanded Microgrid," International Journal of Energy Economics and Policy, Econjournals, vol. 10(4), pages 325-341.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:3:p:1116-:d:1580047. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.