IDEAS home Printed from https://ideas.repec.org/a/ibn/masjnl/v13y2019i11p116.html
   My bibliography  Save this article

An Efficient Approach for Solving Fractional Dynamics of a Predator-Prey System

Author

Listed:
  • Hegagi Mohamed Ali
  • Ismail Gad Ameen

Abstract

In this work, we execute a generally new analytical technique, the modified generalized Mittag-Leffler function method (MGMLFM) for solving nonlinear partial differential equations containing fractional derivative emerging in predator-prey biological population dynamics system. This dynamics system are given by a set of fractional differential equations in the Caputo sense. A new solution is constructed in a power series. The stability of equilibrium points is studied. Moreover, numerical solutions for different cases are given and the methodology is displayed. We conducted a comparing between the results obtained by our method with the results obtained by other methods to illustrate the reliability and effectiveness of our main results.

Suggested Citation

  • Hegagi Mohamed Ali & Ismail Gad Ameen, 2019. "An Efficient Approach for Solving Fractional Dynamics of a Predator-Prey System," Modern Applied Science, Canadian Center of Science and Education, vol. 13(11), pages 116-116, November.
  • Handle: RePEc:ibn:masjnl:v:13:y:2019:i:11:p:116
    as

    Download full text from publisher

    File URL: https://ccsenet.org/journal/index.php/mas/article/download/0/0/41089/42459
    Download Restriction: no

    File URL: https://ccsenet.org/journal/index.php/mas/article/view/0/41089
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ghorbani, Asghar, 2009. "Beyond Adomian polynomials: He polynomials," Chaos, Solitons & Fractals, Elsevier, vol. 39(3), pages 1486-1492.
    2. E. Ahmed & A. S. Hegazi & A. S. Elgazzar, 2004. "On Persistence And Stability Of Some Biological Systems With Cross Diffusion," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 7(01), pages 65-76.
    3. He, Ji-Huan, 2005. "Application of homotopy perturbation method to nonlinear wave equations," Chaos, Solitons & Fractals, Elsevier, vol. 26(3), pages 695-700.
    4. Yanqin Liu, 2012. "Approximate Solutions of Fractional Nonlinear Equations Using Homotopy Perturbation Transformation Method," Abstract and Applied Analysis, Hindawi, vol. 2012, pages 1-14, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shidfar, A. & Molabahrami, A. & Babaei, A. & Yazdanian, A., 2009. "A study on the d-dimensional Schrödinger equation with a power-law nonlinearity," Chaos, Solitons & Fractals, Elsevier, vol. 42(4), pages 2154-2158.
    2. Abdolamir Karbalaie & Hamed Hamid Muhammed & Bjorn-Erik Erlandsson, 2013. "Using Homo-Separation of Variables for Solving Systems of Nonlinear Fractional Partial Differential Equations," International Journal of Mathematics and Mathematical Sciences, Hindawi, vol. 2013, pages 1-8, June.
    3. He, Ji-Huan, 2009. "Nonlinear science as a fluctuating research frontier," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2533-2537.
    4. Abbasbandy, S., 2007. "A numerical solution of Blasius equation by Adomian’s decomposition method and comparison with homotopy perturbation method," Chaos, Solitons & Fractals, Elsevier, vol. 31(1), pages 257-260.
    5. Çelik, Nisa & Seadawy, Aly R. & Sağlam Özkan, Yeşim & Yaşar, Emrullah, 2021. "A model of solitary waves in a nonlinear elastic circular rod: Abundant different type exact solutions and conservation laws," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    6. Javidi, M. & Golbabai, A., 2008. "Exact and numerical solitary wave solutions of generalized Zakharov equation by the variational iteration method," Chaos, Solitons & Fractals, Elsevier, vol. 36(2), pages 309-313.
    7. Amit K Verma & Biswajit Pandit & Ravi P. Agarwal, 2021. "Analysis and Computation of Solutions for a Class of Nonlinear SBVPs Arising in Epitaxial Growth," Mathematics, MDPI, vol. 9(7), pages 1-25, April.
    8. Alipanah, Amjad & Zafari, Mahnaz, 2023. "Collocation method using auto-correlation functions of compact supported wavelets for solving Volterra’s population model," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    9. Ya Qin & Adnan Khan & Izaz Ali & Maysaa Al Qurashi & Hassan Khan & Rasool Shah & Dumitru Baleanu, 2020. "An Efficient Analytical Approach for the Solution of Certain Fractional-Order Dynamical Systems," Energies, MDPI, vol. 13(11), pages 1-14, May.
    10. Lv, Jian Cheng & Yi, Zhang, 2007. "Some chaotic behaviors in a MCA learning algorithm with a constant learning rate," Chaos, Solitons & Fractals, Elsevier, vol. 33(3), pages 1040-1047.
    11. Xu, Lan, 2008. "Variational approach to solitons of nonlinear dispersive K(m,n) equations," Chaos, Solitons & Fractals, Elsevier, vol. 37(1), pages 137-143.
    12. Yu, Guo-Fu & Tam, Hon-Wah, 2006. "Conservation laws for two (2+1)-dimensional differential–difference systems," Chaos, Solitons & Fractals, Elsevier, vol. 30(1), pages 189-196.
    13. Moghimi, Mahdi & Hejazi, Fatemeh S.A., 2007. "Variational iteration method for solving generalized Burger–Fisher and Burger equations," Chaos, Solitons & Fractals, Elsevier, vol. 33(5), pages 1756-1761.
    14. Keramati, B., 2009. "An approach to the solution of linear system of equations by He’s homotopy perturbation method," Chaos, Solitons & Fractals, Elsevier, vol. 41(1), pages 152-156.
    15. Allan, Fathi M., 2009. "Construction of analytic solution to chaotic dynamical systems using the Homotopy analysis method," Chaos, Solitons & Fractals, Elsevier, vol. 39(4), pages 1744-1752.
    16. Demiray, Hilmi, 2006. "Interaction of nonlinear waves governed by Boussinesq equation," Chaos, Solitons & Fractals, Elsevier, vol. 30(5), pages 1185-1189.
    17. Goh, S.M. & Noorani, M.S.M. & Hashim, I., 2009. "A new application of variational iteration method for the chaotic Rössler system," Chaos, Solitons & Fractals, Elsevier, vol. 42(3), pages 1604-1610.
    18. Siddiqui, A.M. & Ahmed, M. & Ghori, Q.K., 2007. "Thin film flow of non-Newtonian fluids on a moving belt," Chaos, Solitons & Fractals, Elsevier, vol. 33(3), pages 1006-1016.
    19. Ramos, J.I., 2009. "Piecewise-adaptive decomposition methods," Chaos, Solitons & Fractals, Elsevier, vol. 40(4), pages 1623-1636.
    20. Alomari, A.K. & Noorani, M.S.M. & Nazar, R., 2009. "On the homotopy analysis method for the exact solutions of Helmholtz equation," Chaos, Solitons & Fractals, Elsevier, vol. 41(4), pages 1873-1879.

    More about this item

    JEL classification:

    • R00 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General - - - General
    • Z0 - Other Special Topics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ibn:masjnl:v:13:y:2019:i:11:p:116. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Canadian Center of Science and Education (email available below). General contact details of provider: https://edirc.repec.org/data/cepflch.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.